Background Medical informatics accumulated vast amounts of data for clinical diagnosis and treatment.However,limited access to follow-up data and the difficulty in integrating data across diverse platforms continue to...Background Medical informatics accumulated vast amounts of data for clinical diagnosis and treatment.However,limited access to follow-up data and the difficulty in integrating data across diverse platforms continue to pose significant barriers to clinical research progress.In response,our research team has embarked on the development of a specialized clinical research database for cardiology,thereby establishing a comprehensive digital platform that facilitates both clinical decision-making and research endeavors.Methods The database incorporated actual clinical data from patients who received treatment at the Cardiovascular Medicine Department of Chinese PLA General Hospital from 2012 to 2021.It included comprehensive data on patients'basic information,medical history,non-invasive imaging studies,laboratory test results,as well as peri-procedural information related to interventional surgeries,extracted from the Hospital Information System.Additionally,an innovative artificial intelligence(AI)-powered interactive follow-up system had been developed,ensuring that nearly all myocardial infarction patients received at least one post-discharge follow-up,thereby achieving comprehensive data management throughout the entire care continuum for highrisk patients.Results This database integrates extensive cross-sectional and longitudinal patient data,with a focus on higher-risk acute coronary syndrome patients.It achieves the integration of structured and unstructured clinical data,while innovatively incorporating AI and automatic speech recognition technologies to enhance data integration and workflow efficiency.It creates a comprehensive patient view,thereby improving diagnostic and follow-up quality,and provides high-quality data to support clinical research.Despite limitations in unstructured data standardization and biological sample integrity,the database's development is accompanied by ongoing optimization efforts.Conclusion The cardiovascular specialty clinical database is a comprehensive digital archive integrating clinical treatment and research,which facilitates the digital and intelligent transformation of clinical diagnosis and treatment processes.It supports clinical decision-making and offers data support and potential research directions for the specialized management of cardiovascular diseases.展开更多
This paper analyzes how artificial intelligence (AI) automation can improve warehouse management compared to emerging technologies like drone usage. Specifically, we evaluate AI’s impact on crucial warehouse function...This paper analyzes how artificial intelligence (AI) automation can improve warehouse management compared to emerging technologies like drone usage. Specifically, we evaluate AI’s impact on crucial warehouse functions—inventory tracking, order fulfillment, and logistics efficiency. Our findings indicate AI automation enables real-time inventory visibility, optimized picking routes, and dynamic delivery scheduling, which drones cannot match. AI better leverages data insights for intelligent decision-making across warehouse operations, supporting improved productivity and lower operating costs.展开更多
The inbound and outbound tasks for valuable imported ship outfitting items are operated by multiple automated guided vehicles(AGVs)simultaneously in the outfitting warehouse.Given the efficiency mismatch between trans...The inbound and outbound tasks for valuable imported ship outfitting items are operated by multiple automated guided vehicles(AGVs)simultaneously in the outfitting warehouse.Given the efficiency mismatch between transportation equipment and the lack of effective scheduling of AGVs,the objective of the studied scheduling problem is to minimize the total travel time cost of vehicles.A multi-AGV task scheduling model based on time window is established considering the loading constraints of AGVs and cooperation time window constraints of stackers.According to the transportation characteristics in the outfitting warehouse,this study pro-poses a conflict detection method for heavy forklift AGVs,and correspondingly defines a conflict penalty function.Furthermore,to comprehensively optimize travel time cost and conflict penalty,a hybrid genetic neighborhood search algorithm(GA-ANS)is proposed.Five neighborhood structures are designed,and adaptive selection opera-tors are introduced to enhance the ability of global search and local chemotaxis.Numerical experiments show that the proposed GA-ANS algorithm can effectively solve the problem even when the scale of the problem increases and the effectiveness of the vehicle conflict penalty strategy is analyzed.展开更多
基金Noncommunicable Chronic Diseases-National Science and Technology Major Project(2023ZD0503906)。
文摘Background Medical informatics accumulated vast amounts of data for clinical diagnosis and treatment.However,limited access to follow-up data and the difficulty in integrating data across diverse platforms continue to pose significant barriers to clinical research progress.In response,our research team has embarked on the development of a specialized clinical research database for cardiology,thereby establishing a comprehensive digital platform that facilitates both clinical decision-making and research endeavors.Methods The database incorporated actual clinical data from patients who received treatment at the Cardiovascular Medicine Department of Chinese PLA General Hospital from 2012 to 2021.It included comprehensive data on patients'basic information,medical history,non-invasive imaging studies,laboratory test results,as well as peri-procedural information related to interventional surgeries,extracted from the Hospital Information System.Additionally,an innovative artificial intelligence(AI)-powered interactive follow-up system had been developed,ensuring that nearly all myocardial infarction patients received at least one post-discharge follow-up,thereby achieving comprehensive data management throughout the entire care continuum for highrisk patients.Results This database integrates extensive cross-sectional and longitudinal patient data,with a focus on higher-risk acute coronary syndrome patients.It achieves the integration of structured and unstructured clinical data,while innovatively incorporating AI and automatic speech recognition technologies to enhance data integration and workflow efficiency.It creates a comprehensive patient view,thereby improving diagnostic and follow-up quality,and provides high-quality data to support clinical research.Despite limitations in unstructured data standardization and biological sample integrity,the database's development is accompanied by ongoing optimization efforts.Conclusion The cardiovascular specialty clinical database is a comprehensive digital archive integrating clinical treatment and research,which facilitates the digital and intelligent transformation of clinical diagnosis and treatment processes.It supports clinical decision-making and offers data support and potential research directions for the specialized management of cardiovascular diseases.
文摘This paper analyzes how artificial intelligence (AI) automation can improve warehouse management compared to emerging technologies like drone usage. Specifically, we evaluate AI’s impact on crucial warehouse functions—inventory tracking, order fulfillment, and logistics efficiency. Our findings indicate AI automation enables real-time inventory visibility, optimized picking routes, and dynamic delivery scheduling, which drones cannot match. AI better leverages data insights for intelligent decision-making across warehouse operations, supporting improved productivity and lower operating costs.
基金China Ministry of Industry and Information Technology for High-Tech Ship Project。
文摘The inbound and outbound tasks for valuable imported ship outfitting items are operated by multiple automated guided vehicles(AGVs)simultaneously in the outfitting warehouse.Given the efficiency mismatch between transportation equipment and the lack of effective scheduling of AGVs,the objective of the studied scheduling problem is to minimize the total travel time cost of vehicles.A multi-AGV task scheduling model based on time window is established considering the loading constraints of AGVs and cooperation time window constraints of stackers.According to the transportation characteristics in the outfitting warehouse,this study pro-poses a conflict detection method for heavy forklift AGVs,and correspondingly defines a conflict penalty function.Furthermore,to comprehensively optimize travel time cost and conflict penalty,a hybrid genetic neighborhood search algorithm(GA-ANS)is proposed.Five neighborhood structures are designed,and adaptive selection opera-tors are introduced to enhance the ability of global search and local chemotaxis.Numerical experiments show that the proposed GA-ANS algorithm can effectively solve the problem even when the scale of the problem increases and the effectiveness of the vehicle conflict penalty strategy is analyzed.