期刊文献+
共找到980篇文章
< 1 2 49 >
每页显示 20 50 100
Early intelligent active assistance in walking for hemiplegic patients under suspension protection: a randomized controlled trial
1
作者 Ma Shanxin Zheng Jianling +5 位作者 Cheng Jian Lin Xi Li Qiuyuan Wang Li Zeng Yangkang Song Luping 《中国组织工程研究》 北大核心 2026年第12期3075-3082,共8页
BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking rec... BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking recovery.OBJECTIVE:To determine whether early suspension-protected training with a personal assistant machine for stroke patients enhances walking ability and prevents muscle spasms.METHODS:Thirty-two early-stage stroke patients from Shenzhen University General Hospital and the China Rehabilitation Research Center were randomly assigned to the experimental group(n=16)and the control group(n=16).Both groups underwent 4 weeks of gait training under the suspension protection system for 30 minutes daily,5 days a week.The experimental group used the personal assistant machine during training.Three-dimensional gait analysis(using the Cortex motion capture system),Brunnstrom staging,Fugl-Meyer Assessment for lower limb motor function,Fugl-Meyer balance function,and the modified Ashworth Scale were evaluated within 1 week before the intervention and after 4 weeks of intervention.RESULTS AND CONCLUSION:After the 4-week intervention,all outcome measures showed significant changes in each group.The experimental group had a small but significant increase in the modified Ashworth Scale score(P<0.05,d=|0.15|),while the control group had a large significant increase(P<0.05,d=|1.48|).The experimental group demonstrated greater improvements in walking speed(16.5 to 38.44 cm/s,P<0.05,d=|4.01|),step frequency(46.44 to 64.94 steps/min,P<0.05,d=|2.32|),stride length(15.50 to 29.81 cm,P<0.05,d=|3.44|),and peak hip and knee flexion(d=|1.82|to|2.17|).After treatment,the experimental group showed significantly greater improvements than the control group in walking speed(38.44 vs.26.63 cm/s,P<0.05,d=|2.75|),stride length,peak hip and knee flexion(d=|1.31|to|1.45|),step frequency(64.94 vs.59.38 steps/min,P<0.05,d=|0.85|),and a reduced support phase(bilateral:24.31%vs.28.38%,P<0.05,d=|0.88|;non-paretic:66.19%vs.70.13%,P<0.05,d=|0.94|).For early hemiplegia,personal assistant machine-assisted gait training under the suspension protection system helps establish a correct gait pattern,prevents muscle spasms,and improves motor function. 展开更多
关键词 hemiplegia stroke suspension protection system personal assistant machine intelligent walking aid early rehabilitation active training walking function NEUROPLASTICITY gait analysis motor function recovery rehabilitation training balance ability
暂未订购
Impacts of High-Intensity Interval Training on Aerobic Capacity, Walking and Balance Function in Stroke Survivors
2
作者 Xueli XIANG 《Medicinal Plant》 2025年第5期55-59,66,共6页
[Objectives]To synthesize evidence on HIIT versus moderate-intensity continuous training(MICT)or routine rehabilitation in stroke survivors.[Methods]We systematically searched 8 databases(PubMed,EMBASE,CENTRAL,Web of ... [Objectives]To synthesize evidence on HIIT versus moderate-intensity continuous training(MICT)or routine rehabilitation in stroke survivors.[Methods]We systematically searched 8 databases(PubMed,EMBASE,CENTRAL,Web of Science,SPORTSDiscus,PsycINFO,SCOPUS,CINAHL)up to May 2025.Seventeen randomized controlled trials(RCTs;total n=1142)met inclusion criteria:adults with stroke,device-based HIIT(≥70%HRR/VO 2peak),and outcomes assessing VO_(2)peak,6-min walk distance(6MWD),or Berg Balance Scale(BBS).Methodological quality was evaluated using the PEDro scale.Pooled effect sizes(Hedges'g)were calculated via random-effects models,with heterogeneity quantified by I^(2).[Results]HIIT significantly improved peak oxygen uptake(VO_(2)peak)versus controls(g=0.59,95%CI:0.44-0.75,p<0.001;I^(2)=16.29%).Low heterogeneity and symmetrical funnel plots supported robustness.HIIT also enhanced walking endurance(6MWD:g=0.32,95%CI:0.16-0.48,p<0.01;I^(2)=30%).In contrast,no significant benefit was observed for balance function(BBS:g=0.07,95%CI:-0.13-0.26,p=0.50;I^(2)=0%).[Conclusions]HIIT is a safe and highly effective intervention for enhancing aerobic capacity and walking function post-stroke.Its benefits are maximized at higher intensities and longer durations but do not extend to balance improvement.Integrating HIIT into stroke rehabilitation protocols is strongly recommended to promote functional independence. 展开更多
关键词 High-Intensity Interval Training(HIIT) Aerobic capacity walking BALANCE Stroke survivors
在线阅读 下载PDF
Chasing in virtual environment:Dynamic alignment for multi-user collaborative redirected walking
3
作者 Tianyang DONG Shuqian LV +1 位作者 Hubin KONG Huanbo ZHANG 《虚拟现实与智能硬件(中英文)》 2025年第1期26-46,共21页
Background The redirected walking(RDW)method for multi-user collaboration requires maintaining the relative position between users in a virtual environment(VE)and physical environment(PE).A chasing game in a VE is a t... Background The redirected walking(RDW)method for multi-user collaboration requires maintaining the relative position between users in a virtual environment(VE)and physical environment(PE).A chasing game in a VE is a typical virtual reality game that entails multi-user collaboration.When a user approaches and interacts with a target user in the VE,the user is expected to approach and interact with the target user in the corresponding PE as well.Existing methods of multi-user RDW mainly focus on obstacle avoidance,which does not account for the relative positional relationship between the users in both VE and PE.Methods To enhance the user experience and facilitate potential interaction,this paper presents a novel dynamic alignment algorithm for multi-user collaborative redirected walking(DA-RDW)in a shared PE where the target user and other users are moving.This algorithm adopts improved artificial potential fields,where the repulsive force is a function of the relative position and velocity of the user with respect to dynamic obstacles.For the best alignment,this algorithm sets the alignment-guidance force in several cases and then converts it into a constrained optimization problem to obtain the optimal direction.Moreover,this algorithm introduces a potential interaction object selection strategy for a dynamically uncertain environment to speed up the subsequent alignment.To balance obstacle avoidance and alignment,this algorithm uses the dynamic weightings of the virtual and physical distances between users and the target to determine the resultant force vector.Results The efficacy of the proposed method was evaluated using a series of simulations and live-user experiments.The experimental results demonstrate that our novel dynamic alignment method for multi-user collaborative redirected walking can reduce the distance error in both VE and PE to improve alignment with fewer collisions. 展开更多
关键词 Virtual reality Multi-user redirected walking User collisions Dynamic alignment
在线阅读 下载PDF
A review on the coordinative structure of human walking and the application of principal component analysis 被引量:1
4
作者 Xinguang Wang Nicholas O'Dwyer Mark Halaki 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第7期662-670,共9页
Walking is a complex task which includes hundreds of muscles, bones and joints working together to deliver smooth movements. With the complexity, walking has been widely investigated in order to identify the pattern o... Walking is a complex task which includes hundreds of muscles, bones and joints working together to deliver smooth movements. With the complexity, walking has been widely investigated in order to identify the pattern of multi-segment movement and reveal the control mechanism. The degree of freedom and dimensional properties provide a view of the coordinative structure during walking, which has been extensively studied by using dimension reduction technique. In this paper, the studies related to the coordinative structure, dimensions detection and pattern reorganization during walking have been reviewed. Principal component analysis, as a popular technique, is widely used in the processing of human movement data. Both the principle and the outcomes of principal component analysis were introduced in this paper. This technique has been reported to successfully reduce the redundancy within the original data, identify the physical meaning represented by the extracted principal components and discriminate the different patterns. The coordinative structure during walking assessed by this technique could provide further information of the body control mechanism and correlate walking pattern with injury. 展开更多
关键词 neural regeneratJon REVIEWS human walking coordinative structure pattern synergy principalcomponent analysis dimension reduction GENDER walking speed correlation linear systemanalysis COHERENCE NEUROREGENERATION
暂未订购
Estimating walking access area for rail transit station based on discrete choice model 被引量:1
5
作者 Zhang Ning Shi Zhuangbin +1 位作者 Zhang Yunlong Zhang Xiaojun 《Journal of Southeast University(English Edition)》 EI CAS 2018年第3期377-385,共9页
The discrete choice model is used to estimate the walking access area of rail transit stations while considering the influence of existing competition from other traffic modes. The acceptable walking access area is de... The discrete choice model is used to estimate the walking access area of rail transit stations while considering the influence of existing competition from other traffic modes. The acceptable walking access area is determined according to the willingness of passengers to walk who prefer rail transit compared with bus and automobile. Empirical studies were conducted using the survey data of six stations from the rail transit in Nanjing, China. The results indicate that the rail transit is more preferable compared with bus and private automobile in this case when excluding the influence of individual and environmental factors. It is found that passengers tend to underestimate their willingness to walk. The acceptable walking access area of every rail transit station is different from each other. Suburban stations generally have a larger walking access area than downtown stations. In addition, a better walking environment and a scarcer surrounding traffic environment can also lead to a larger walking area. The model was confirmed to be effective and reasonable according to the model validation. This study can be of benefit to the passenger transportation demand estimation in the location planning and evaluation of rail transit stations. 展开更多
关键词 walking access area urban rail transit discretechoice model walking environment competing trafficmodes passenger transportation demand
在线阅读 下载PDF
Computational Models to Synthesize Human Walking 被引量:1
6
作者 Lei Ren David Howard Laurence Kenney 《Journal of Bionic Engineering》 SCIE EI CSCD 2006年第3期127-138,共12页
The synthesis of human walking is of great interest in biomechanics and biomimetic engineering due to its predictive capabilities and potential applications in clinical biomechanics, rehabilitation engineering and bio... The synthesis of human walking is of great interest in biomechanics and biomimetic engineering due to its predictive capabilities and potential applications in clinical biomechanics, rehabilitation engineering and biomimetic robotics. In this paper, the various methods that have been used to synthesize humanwalking are reviewed from an engineering viewpoint. This involves a wide spectrum of approaches, from simple passive walking theories to large-scale computational models integrating the nervous, muscular and skeletal systems. These methods are roughly categorized under four headings: models inspired by the concept of a CPG (Central Pattern Generator), methods based on the principles of control engineering, predictive gait simulation using optimisation, and models inspired by passive walking theory. The shortcomings and advantages of these methods are examined, and future directions are discussed in the context of providing insights into the neural control objectives driving gait and improving the stability of the predicted gaits. Future advancements are likely to be motivated by improved understanding of neural control strategies and the subtle complexities of the musculoskeletal system during human locomotion. It is only a matter of time before predictive gait models become a practical and valuable tool in clinical diagnosis, rehabilitation engineering and robotics. 展开更多
关键词 predictive gait modelling human walking bipedal walking
在线阅读 下载PDF
On the Optimal Modes of Controlled Transfer of Walking Propulsion Devices 被引量:1
7
作者 M.V.Miroshkina E.S.Briskin 《Journal of Artificial Intelligence and Technology》 2021年第3期174-179,共6页
The problem of walking machine leg transfer is considered.Optimal laws of transfer are determined with regard to geometrical features ofgroundand underwater.Complex optimality criterion is introduced as the sum of ind... The problem of walking machine leg transfer is considered.Optimal laws of transfer are determined with regard to geometrical features ofgroundand underwater.Complex optimality criterion is introduced as the sum of indexes of quality of the movement multiplied each by weight coefficients.The solution is provided based on the walking machine“Ortonog.” 展开更多
关键词 walking propulsion devices overcoming obstacles leg transfer optimal modes underwater walking machine
在线阅读 下载PDF
Alterations in neuromuscular activation patterns associated with walking in short-leg walking boots
8
作者 Douglas Powell Kurt Clowers +1 位作者 Maria Keefer Songning Zhang 《Journal of Sport and Health Science》 SCIE 2012年第1期43-48,共6页
Short-leg walking boots are a common intervention for acute and chronic lower extremity injury.Few studies have examined the neuromuscular adaptations associated with short-leg walking boots and no previous study has ... Short-leg walking boots are a common intervention for acute and chronic lower extremity injury.Few studies have examined the neuromuscular adaptations associated with short-leg walking boots and no previous study has investigated timing characteristics of muscle activation during gait.The purpose of the current study was to examine the timing and amplitudes of muscle activation of the extrinsic ankle musculature during walking in two types of short-leg walking boots.Methods:Eleven healthy young adults performed five level walking trials at a self-selected pace in each of three conditions:normal walking,Gait Walker and Equalizer short-leg walking boots.Ground reaction forces were collected from a force platform while surface electromyography (EMG)was collected from the tibialis anterior,peroneus longus and medial gastrocnemius.EMG signals were rectified and smoothed using the root mean squared with a 20-ms smoothing window and were normalized to the largest mean of the normal walking trials.A repeated measures analysis of variance was used to assess the effect of short-leg walking boots on the onset,duration and amplitude of muscle activation.Results:Short-leg walking boots were generally associated with earlier onsets of muscle activation and longer durations of muscle activation.However,there was no reduction in EMG amplitude.Conclusion:The findings of this study show that the induced alterations in muscle activation patterns may limit the short-leg walking boots.Copyright(C)2012,Shanghai University of Sport.Production and hosting by Elsevier B.V.All rights reserved. 展开更多
关键词 ELECTROMYOGRAPHY Gait Short-leg walker walking walking boot
暂未订购
Combination of diaphragmatic breathing with therapeutic walking exercise to increase peak expiratory flow rate in asthma patients
9
作者 Laily Widy Astuti Titih Huriah 《Frontiers of Nursing》 2022年第4期439-444,共6页
Objective:This study aimed to determine the effect of combined diaphragmatic breathing and therapeutic walking exercise on peak expiratory flow in asthma patients.Methods:The research design used a quasi-experiment no... Objective:This study aimed to determine the effect of combined diaphragmatic breathing and therapeutic walking exercise on peak expiratory flow in asthma patients.Methods:The research design used a quasi-experiment nonequivalent pretest and posttest design.The research sample contained 38 respondents divided into intervention and control groups,selected by simple random sampling.The control group received standard drug therapy,while the intervention group received standard drug therapy and a combination of diaphragmatic breathing and therapeutic walking exercise for 2 weeks.This exercise was carried out in the morning,6 times a week,with 5 diaphragmatic breathing and exhalations per exercise.After that,a 1-min break was followed by a therapeutic walking exercise of 5–15 min,with an increased duration.Both groups measured the peak expiratory flow before and after the intervention using a peak flow meter.The data analysis used central tendency and t-test.Results:The results showed that the mean peak expiratory flow in the intervention group was 306.84,while in the control group,it was 232.63,with the value of the t-test being-14.17(P<0.0001).Conclusions:Diaphragmatic breathing and therapeutic walking exercise significantly increased the peak expiratory flow in asthma patients. 展开更多
关键词 ASTHMA diaphragmatic breathing peak expiratory flow therapeutic walking exercise walking exercise
暂未订购
On Determining the Optimal Lifting Law of the Walking Propulsion Device Foot of an Underwater Robot from the Bottom
10
作者 Eugene S.Briskin Yaroslav V.Kalinin Liliya D.Smirnaya 《Journal of Artificial Intelligence and Technology》 2021年第4期214-218,共5页
The problem of lifting the foot of the walking propulsion device of an underwater mobile robot is considered,taking into account the additional"compression""force acting on it.A mathematical model has b... The problem of lifting the foot of the walking propulsion device of an underwater mobile robot is considered,taking into account the additional"compression""force acting on it.A mathematical model has been developed for the detachment of a propulsion foot from the ground,based on Henry's laws establishing the concentration of dissolved air in a liquid,the law of gas expansion at a constant temperature,Darcy's law on fluid filtration,and the theorem on the motion of the center of mass of a solid body.The linearized model allows to obtain and analytical solutions.Based on the solution of the variat ional problem,optimal modes of lifting the foot of the walking propulsion of an underwater mobile robot are established. 展开更多
关键词 walking propulsion device underwater walking robot pulling force the force of resistance to motion optimal control
在线阅读 下载PDF
Discrepancies in walking speed measurements post-bed-rest:a comparative analysis of real-world vs.laboratory assessments
11
作者 Marcello Grassi Ramona Ritzmann +5 位作者 Fiona Von Der Straten Jonas Böcker Uwe Mittag Edwin Mulder Martin Daumer Jörn Rittweger 《Translational Exercise Biomedicine》 2024年第3期331-343,共13页
Objectives Understanding differences between real-world walking speed(RWS)and laboratory-measured walking speed(LWS)is crucial for comprehensive mobility assessments,especially in context of prolonged immobilization.T... Objectives Understanding differences between real-world walking speed(RWS)and laboratory-measured walking speed(LWS)is crucial for comprehensive mobility assessments,especially in context of prolonged immobilization.This study aimed to investigate disparities in walking speed following a 60-day bed-rest period.Methods In 11 male participants,RWS was continuously monitored using a tri-axial accelerometer worn on the waist,while LWS was assessed via a 10-m walk test at preferred speed,on three different study days after immobilization.Statistical analyses included Bland–Altman and Pearson’s correlation to evaluate agreement between RWS and LWS,alongside paired-sample t-tests and univariate linear regression models to assess significance of differences and temporal effects on gait speed.Results Results of Bland-Altman analysis showed no agreement between RWS and LWS(mean difference 0.77 m/s)and nonsignificant correlation(r=0.19,p-value=0.3).Paired-sample t-tests indicated significantly lower RWS compared to LWS for all study days(p-value<0.001).Univariate linear regression models demonstrated a significant effect of test day on RWS(p-value<0.001)but not on LWS(p-value=0.23).Conclusions These findings emphasize the importance of integrating both assessments to capture comprehensive mobility changes following prolonged periods of inactivity.Particularly significant is that RWS is constantly lower than LWS,with the former being more representative as it reflects what normally participants would do when not under observation.Lastly,understanding discrepancies between RWS and LWS would allow for more appropriate rehabilitation programs to speed up recovery while simultaneously keeping the rehabilitation safe and tailored. 展开更多
关键词 real-world walking speed laboratory walking speed gait speed comparison accelerometers
暂未订购
Kinematics and Dynamics Analysis of a Quadruped Walking Robot with Parallel Leg Mechanism 被引量:13
12
作者 WANG Hongbo SANG Lingfeng +2 位作者 HU Xing ZHANG Dianfan YU Hongnian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期881-891,共11页
It is desired to require a walking robot for the elderly and the disabled to have large capacity,high stiffness,stability,etc.However,the existing walking robots cannot achieve these requirements because of the weight... It is desired to require a walking robot for the elderly and the disabled to have large capacity,high stiffness,stability,etc.However,the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function.Therefore,Improvement of enhancing capacity and functions of the walking robot is an important research issue.According to walking requirements and combining modularization and reconfigurable ideas,a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed.The proposed robot can be used for both a biped and a quadruped walking robot.The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized.The results show that performance of the walking robot is optimal when the circumradius R,r of the upper and lower platform of leg mechanism are 161.7 mm,57.7 mm,respectively.Based on the optimal results,the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory,and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed,which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process.Besides laying a theoretical foundation for development of the prototype,the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism. 展开更多
关键词 walking robot parallel leg mechanism KINEMATICS DYNAMICS over-determinate inputs
在线阅读 下载PDF
Comparison of walking quality variables between incomplete spinal cord injury patients and healthy subjects by using a footscan plantar pressure system 被引量:6
13
作者 Xiang-Nan Yuan Wei-Di Liang +4 位作者 Feng-Hua Zhou Han-Ting Li Li-Xin Zhang Zhi-Qiang Zhang Jian-Jun Li 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第2期354-360,共7页
The main goal of spinal cord rehabilitation is to restore walking ability and improve walking quality after spinal cord injury(SCI). The spatiotemporal parameters of walking and the parameters of plantar pressure can ... The main goal of spinal cord rehabilitation is to restore walking ability and improve walking quality after spinal cord injury(SCI). The spatiotemporal parameters of walking and the parameters of plantar pressure can be obtained using a plantar pressure analysis system. Previous studies have reported step asymmetry in patients with bilateral SCI. However, the asymmetry of other parameters in patients with SCI has not been reported. This was a prospective, cross-sectional study, which included 23 patients with SCI, aged 48.1 ± 14.5 years, and 28 healthy subjects, aged 47.1 ± 9.8 years. All subjects underwent bare foot walking on a plantar pressure measurement device to measure walking speed and spatiotemporal parameters. Compared with healthy subjects, SCI patients had slower walking speed, longer stride time and stance time, larger stance phase percentage, and shorter stride length. The peak pressures under the metatarsal heads and toe were lower in SCI patients than in healthy subjects. In the heel, regional impulse and the contact area percentage in SCI patients were higher than those in healthy subjects. The symmetry indexes of stance time, step length, maximum force, impulse and contact area were increased in SCI patients, indicating a decline in symmetry. The results confirm that the gait quality, including spatiotemporal variables and plantar pressure parameters, and symmetry index were lower in SCI patients compared with healthy subjects. Plantar pressure parameters and symmetry index could be sensitive quantitative parameters to improve gait quality of SCI patients. The protocols were approved by the Clinical Research Ethics Committee of Shengjing Hospital of China Medical University(approval No. 2015 PS54 J) on August 13, 2015. This trial was registered in the ISRCTN Registry(ISRCTN42544587) on August 22, 2018. Protocol version: 1.0. 展开更多
关键词 nerve REGENERATION spinal cord injury walking gait QUALITY PLANTAR PRESSURE SYSTEM PLANTAR PRESSURE distribution speed PLANTAR PRESSURE impulse contact area symmetry index neural REGENERATION
暂未订购
Motion Error Compensation of Multi-legged Walking Robots 被引量:6
14
作者 WANG Liangwen CHEN Xuedong +3 位作者 WANG Xinjie TANG Weigang SUN Yi PAN Chunmei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期639-646,共8页
Existing errors in the structure and kinematic parameters of multi-legged walking robots,the motion trajectory of robot will diverge from the ideal sports requirements in movement.Since the existing error compensation... Existing errors in the structure and kinematic parameters of multi-legged walking robots,the motion trajectory of robot will diverge from the ideal sports requirements in movement.Since the existing error compensation is usually used for control compensation of manipulator arm,the error compensation of multi-legged robots has seldom been explored.In order to reduce the kinematic error of robots,a motion error compensation method based on the feedforward for multi-legged mobile robots is proposed to improve motion precision of a mobile robot.The locus error of a robot body is measured,when robot moves along a given track.Error of driven joint variables is obtained by error calculation model in terms of the locus error of robot body.Error value is used to compensate driven joint variables and modify control model of robot,which can drive the robots following control model modified.The model of the relation between robot's locus errors and kinematic variables errors is set up to achieve the kinematic error compensation.On the basis of the inverse kinematics of a multi-legged walking robot,the relation between error of the motion trajectory and driven joint variables of robots is discussed.Moreover,the equation set is obtained,which expresses relation among error of driven joint variables,structure parameters and error of robot's locus.Take MiniQuad as an example,when the robot MiniQuad moves following beeline tread,motion error compensation is studied.The actual locus errors of the robot body are measured before and after compensation in the test.According to the test,variations of the actual coordinate value of the robot centroid in x-direction and z-direction are reduced more than one time.The kinematic errors of robot body are reduced effectively by the use of the motion error compensation method based on the feedforward. 展开更多
关键词 multi-legged walking robot error model motion error compensation kinematic analysis motion precision
在线阅读 下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部