With the rapid advancement of machine learning technology and its growing adoption in research and engineering applications,an increasing number of studies have embraced data-driven approaches for modeling wind turbin...With the rapid advancement of machine learning technology and its growing adoption in research and engineering applications,an increasing number of studies have embraced data-driven approaches for modeling wind turbine wakes.These models leverage the ability to capture complex,high-dimensional characteristics of wind turbine wakes while offering significantly greater efficiency in the prediction process than physics-driven models.As a result,data-driven wind turbine wake models are regarded as powerful and effective tools for predicting wake behavior and turbine power output.This paper aims to provide a concise yet comprehensive review of existing studies on wind turbine wake modeling that employ data-driven approaches.It begins by defining and classifying machine learning methods to facilitate a clearer understanding of the reviewed literature.Subsequently,the related studies are categorized into four key areas:wind turbine power prediction,data-driven analytic wake models,wake field reconstruction,and the incorporation of explicit physical constraints.The accuracy of data-driven models is influenced by two primary factors:the quality of the training data and the performance of the model itself.Accordingly,both data accuracy and model structure are discussed in detail within the review.展开更多
Regional turbofan aircraft,which are used for medium-short distances,have a heightened risk of high-altitude Wake Vortices(VV)because of their tail-mounted engines and high horizontal tail configurations.For some regi...Regional turbofan aircraft,which are used for medium-short distances,have a heightened risk of high-altitude Wake Vortices(VV)because of their tail-mounted engines and high horizontal tail configurations.For some regional medium-short-range turbofan aircraft,this threat is higher than that for conventionally designed aircraft.To analyze the flight safety of turbofan aircraft during cruise,this study developed a model to assess wake vortex encounters based on evolutionary high-altitude wake flow patterns.First,the high-altitude wake vortex aircraft dissipation patterns were analyzed by combining Quick Access Recorder(QAR)flight data with the wake vortex evolution model.Then,to consider the uniqueness of the medium-short-range turbofan aircraft,the severity of the wake vortex encounters was simulated using an induced roll moment coefficient.The proposed high-altitude wake vortex encounter model was able to identify and assess the highaltitude wake vortex changes,the bearing moments at different altitudes,and the atmospheric pressure conditions.Using the latest wake separation standards from the International Civil Aviation Organization(ICAO),acceptable safety wake intervals for follower aircraft in different scenarios were determined for the safety assessment.The results indicate that compared to mid and low altitudes,the high-altitude aircraft wake vortex dissipation rate is faster,the ultimate bearing moment is weaker,and the roll moment coefficient is higher,which confirm that there is elevated wake vortex encounter severity for regional turbofan aircraft.As safety is found to deteriorate when encountering wake vortices at altitudes higher than 8 km,new medium-short-range turbofan regional aircraft require higher safety margins than the latest wake separation standards.展开更多
To enhance the prediction accuracy of unsteady wakes behind wind turbines,a novel reduced-order model is proposed by integrating a multifunctional recurrent fuzzy neural network(MFRFNN)and proper orthogonal decom-posi...To enhance the prediction accuracy of unsteady wakes behind wind turbines,a novel reduced-order model is proposed by integrating a multifunctional recurrent fuzzy neural network(MFRFNN)and proper orthogonal decom-position(POD).First,POD is employed to reduce the di-mensionality of the wind field data,extracting spatiotempo-rally correlated modal coefficients and modes.These reduced-order variables can effectively capture the essential features of unsteady wake behaviors.Next,MFRFNN is utilized to predict the time series of modal coefficients.Fi-nally,by combining the predicted modal coefficients with their corresponding modes,a flow field is reconstructed,al-lowing accurate prediction of unsteady wake dynamics.The predicted wake data exhibit high consistency with large eddy simulation results in both the near-and far-wake re-gions and outperform existing data-driven methods.This ap-proach offers significant potential for optimizing wind farm design and provides a new solution for the precise prediction of wind turbine wake behavior.展开更多
The sedimentary bed morphology modulated by the wake flow of a wall-mounted flexible aquatic vegetation blade across various structural aspect ratios(A_(R)=l/b,where l and b are the length and width of the blade,respe...The sedimentary bed morphology modulated by the wake flow of a wall-mounted flexible aquatic vegetation blade across various structural aspect ratios(A_(R)=l/b,where l and b are the length and width of the blade,respectively)and incoming flow velocities was experimentally investigated in a water channel.A surface scanner was implemented to quantify bed topography,and a tomographic particle image velocimetry system was used to characterize the three-dimensional wake flows.The results showed that due to the deflection of incoming flow,the velocity magnitude increased at the lateral sides of the blade,thereby producing distinctive symmetric scour holes in these regions.The normalized morphology profiles of the sedimentary bed,which were extracted along the streamwise direction at the location of the maximum erosion depth,exhibited a self-similar pattern that closely followed a sinusoidal wave profile.The level of velocity magnitude enhancement was highly correlated to the postures of the flexible blade.At a given flow velocity,the blade with lower aspect ratios exhibited less significant deformation,causing more significant near-bed velocity enhancement in the wake deflection zone and therefore leading to higher erosion volumes.Further investigation indicated that when the blade underwent slight deformation,the larger velocity enhancement close to the bed can be attributed to more significant flow deflection effects at the lateral sides of the blade and stronger flow mixing with high momentum flows away from the bed.Supported with measurements,a basic formula was established to quantify the shear stress acting on the sedimentary bed as a function of incoming flow velocity and blade aspect ratio.展开更多
In the Northern Hemisphere,cold wakes induced by tropical cyclones(TCs)are generally biased to the right of the storm track.However,a recent study found that a non-negligible proportion of cold wakes is actually leftw...In the Northern Hemisphere,cold wakes induced by tropical cyclones(TCs)are generally biased to the right of the storm track.However,a recent study found that a non-negligible proportion of cold wakes is actually leftward-biased.To further reveal the underlying physical mechanisms,the three-dimensional dynamic processes for the typical leftward cold wake of Hurricane Jova(2005)are investigated through a sequence of numerical simulations.Results reveal that the vertical advection in response to Jova(2005)is biased to the left of its track in the upper layer.In cooperation with the heterogenous ambient oceanic temperature stratification,the rightward vertical mixing is suppressed while the leftward feature of vertical advection is further intensified,which effectively promotes the formation of leftward cold wake.Additionally,the currents induced by Jova(2005)drive colder(warmer)water to the left(right)when coupled with background horizontal temperature gradients and then strengthen the leftward distribution of the temperature anomaly.These conclusions are substantiated by the control simulation,as the upper-layer temperature anomaly is restored to rightward disposition with homogeneous initial thermal structures.Based on three groups of sensitivity experiments,the leftward pattern of upwelling is found to be inextricably accompanied by the curl of wind stress caused by the movement of TCs.With the increase in translation speed from the stationary state,the symmetric structure of vertical velocity is gradually distorted to be leftward.Furthermore,the leftward bias distance of the upwelling center in the upper layer positively correlates with the radius of maximum wind,indicating that the wind structure can significantly influences the oceanic responses to TCs.展开更多
When a ship moves in an oblique flow,its hydrodynamic loads and wake characteristics vary substantially from those in straight-ahead motion.This dissimilarity can be even more complex when the ship operates in a seawa...When a ship moves in an oblique flow,its hydrodynamic loads and wake characteristics vary substantially from those in straight-ahead motion.This dissimilarity can be even more complex when the ship operates in a seaway of shallow water.In this paper,a numerical analysis of the shallow-water effect on the hydrodynamic forces and wake characteristics of an international ship model,KVLCC2,in oblique flows is conducted.Numerical simulations are performed based on the Reynolds Averaged NavierStokes equation in conjunction with the shear stress transport(SST)k-ωturbulence model.Four relative water depths(h=1.2T,1.5T,3.0T,and 24T;T is the ship draft)and five different drift angles(β=0°,5°,10°,15°,and 20°)are considered.Results reveal the following:i)The shallow-water effect is strong and leads to nonlinear increases in the longitudinal force regardless of drift angles and on the transverse force and yaw moment whenever the drift angle increases.ii)In shallow water,the mean wake fraction is sensitive to the drift angle,and the strength of the aft-body vortex on the leeward side increases.展开更多
Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)framewo...Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)frameworks have recently been employed for forecasting freestream wind and wake fields.However,these PINN frameworks face challenges of low prediction accuracy and long training times.Therefore,this paper constructed a PINN framework for dynamic wake field prediction by integrating two accuracy improvement strategies and a step-by-step training time saving strategy.The results showed that the different performance improvement routes significantly improved the overall performance of the PINN.The accuracy and efficiency of the PINN with spatiotemporal improvement strategies were validated via LiDAR-measured data from a wind farm in Shandong province,China.This paper sheds light on load reduction,efficiency improvement,intelligent operation and maintenance of wind farms.展开更多
Duo to fluctuations in atmospheric turbulence and yaw control strategies,wind turbines are often in a yaw state.To predict the far wake velocity field of wind turbines quickly and accurately,a wake velocity model was ...Duo to fluctuations in atmospheric turbulence and yaw control strategies,wind turbines are often in a yaw state.To predict the far wake velocity field of wind turbines quickly and accurately,a wake velocity model was derived based on the method of momentum conservation considering the wake steering of the wind turbine under yaw conditions.To consider the shear effect of the vertical incoming wind direction,a two-dimensional Gaussian distribution function was introduced to model the velocity loss at different axial positions in the far wake region based on the assumption of nonlinear wake expansion.This work also developed a“prediction-correction”method to solve the wake velocity field,and the accuracy of the model results was verified in wake experiments on the Garrad Hassan wind turbine.Moreover,a 33-kW two-blade horizontal axis wind turbine was simulated using this method,and the results were compared with the classical wake model under the same parameters and the computational fluid dynamics(CFD)simulation results.The results show that the nonlinear wake model well reflected the influence of incoming flow shear and yaw wake steering in the wake velocity field.Finally,computation of the wake flow for the Horns Rev offshore wind farm with 80 wind turbines showed an error within 8%compared to the experimental values.The established wake model is less computationally intensive than other methods,has a faster calculation speed,and can be used for engineering calculations of the wake velocity in the far wakefield of wind turbines.展开更多
WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be pr...WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be predicted, nonlinear items are added into the linear theory, and the old small angle assumption use d in matrix prediction is removed. All of these enha ncements are aimed at the low speed flight phase and formulations for the induce d velocity field just in the TTP frame are derived. The corresponding FORTRAN pr ogram is tested and optimized for the real time applications on PCs.展开更多
Orexins, produced in the lateral hypothalamus, are important neuropeptides that participate in the sleep/wake cycle, and their expres- sion coincides with the projection area of the vagus nerve in the brain. Vagus ner...Orexins, produced in the lateral hypothalamus, are important neuropeptides that participate in the sleep/wake cycle, and their expres- sion coincides with the projection area of the vagus nerve in the brain. Vagus nerve stimulation has been shown to decrease the amounts of daytime sleep and rapid eye movement in epilepsy patients with traumatic brain injury. In the present study, we investigated whether vagus nerve stimulation promotes wakefulness and affects orexin expression. A rat model of traumatic brain injury was established using the free fall drop method. In the stimulated group, rats with traumatic brain injury received vagus nerve stimulation (frequency, 30 Hz, current, 1.0 mA; pulse width, 0.5 ms; total stimulation time, 15 minutes). In the antagonist group, rats with traumatic brain injury were intracerebroventricularly injected with the orexin receptor type 1 (OXIR) antagonist SB334867 and received vagus nerve stimulation. Changes in consciousness were observed after stimulation in each group. Enzyme-linked immunosorbent assay, western blot assay and immunohistochemistry were used to assess the levels of orexin-A and OX1R expression in the prefrontal cortex. In the stimulated group, consciousness was substantially improved, orexin-A protein expression gradually increased within 24 hours after injury and OX1R expres- sion reached a peak at 12 hours, compared with rats subjected to traumatic brain injury only. In the antagonist group, the wake-promoting effect of vagus nerve stimulation was diminished, and orexin-A and OX1R expression were decreased, compared with that of the stim- ulated group. Taken together, our findings suggest that vagus nerve stimulation promotes the recovery of consciousness in comatose rats after traumatic brain injury. The upregulation of orexin-A and OXIR expression in the prefrontal cortex might be involved in the wake-promoting effects of vagus nerve stimulation.展开更多
A full-span free-wake method is coupled with an unsteady panel method to accurately predict the unsteady aerodynamics of helicopter rotor blades in hover and forward flight. The unsteady potential-based panel method i...A full-span free-wake method is coupled with an unsteady panel method to accurately predict the unsteady aerodynamics of helicopter rotor blades in hover and forward flight. The unsteady potential-based panel method is used to consider aerodynamics of finite thickness multi-bladed rotors, and the full-span free-wake method is applied to simulating dynamics of rotor wake. These methods are tightly coupled through trailing-edge Kutta condition and by converting doublet-wake panels to full-span vortex filaments. A velocity-field integration technique is also adopted to overcome singularity problem during the interaction between the rotor wake and blades. Helicopter rotors including Caradonna–Tung, UH-60A, and AH-1G rotors, are simulated in hover and forward flight to validate the accuracy of this approach. The predicted aerodynamic loads of rotor blades agree well with available measured data and computational fluid dynamics (CFD) results, and the unsteady dynamics of rotor wake is also well simulated. Compared to CFD, the present method obtains accurate results more efficiently and is suitable to rotorcraft aeroelastic analysis.展开更多
This paper describes an improved model of curved vortex element on the circular arc (CVEC) for rotor wake analysis.As the key of the paper,two approximate formulas are derived by the series of limited terms to replace...This paper describes an improved model of curved vortex element on the circular arc (CVEC) for rotor wake analysis.As the key of the paper,two approximate formulas are derived by the series of limited terms to replace the Legendre incomplete elliptical integrals from the Biot-Savart integration,and the analytical solution of the induced velocity for the CVEC is obtained, which is more efficient in the complex rotor free wake calculation. Furthermore,the approximate formulas with the chosen factors are selected to avoid sigularity and give finite result of the induced velocity on the Vortex line,and an equivalent viscous vortex core radius might be evaluated.As examples, the induced velocity calculations on the vortex ring and two turns of a skew vortex helix are performed, and the comparisons between the circular-arc vortex element and the conventional straightline vortex element (SLVE) are given.It is shown that this curved vortex element model is advantageous over the SLVE model and is suitable for the rotor wake analysis.展开更多
In this study,the performance of a twin-screw propeller under the influence of the wake field of a fully appended ship was investigated using a coupled Reynolds-averaged Navier–Stokes(RANS)/boundary element method(BE...In this study,the performance of a twin-screw propeller under the influence of the wake field of a fully appended ship was investigated using a coupled Reynolds-averaged Navier–Stokes(RANS)/boundary element method(BEM)code.The unsteady BEM is an efficient approach to predicting propeller performance.By applying the time-stepping method in the BEM solver,the trailing vortex sheet pattern of the propeller can be accurately captured at each time step.This is the main innovation of the coupled strategy.Furthermore,to ascertain the effect of the wake field of the ship with acceptable accuracy,a RANS solver was developed.A finite volume method was used to discretize the Navier–Stokes equations on fully unstructured grids.To simulate ship motions,the volume of the fluid method was applied to the RANS solver.The validation of each solver(BEM/RANS)was separately performed,and the results were compared with experimental data.Ultimately,the BEM and RANS solvers were coupled to estimate the performance of a twin-screw propeller,which was affected by the wake field of the fully appended hull.The proposed model was applied to a twin-screw oceanography research vessel.The results demonstrated that the presented model can estimate the thrust coefficient of a propeller with good accuracy as compared to an experimental self-propulsion test.The wake sheet pattern of the propeller in open water(uniform flow)was also compared with the propeller in a real wake field.展开更多
In order to overcome the typical limitation of earlier studies,where the simulation of aircraft wake vortices was essentially based on the half-model of symmetrical rectangular wings,in the present analysis the entire...In order to overcome the typical limitation of earlier studies,where the simulation of aircraft wake vortices was essentially based on the half-model of symmetrical rectangular wings,in the present analysis the entire aircraft(a typical A330-200 aircraft)geometry is taken into account.Conditions corresponding to the nearfield phase(takeoff and landing)are considered assuming a typical attitude angle of 7°and different crosswind intensities,i.e.,0,2 and 5 m/s.The simulation results show that the aircraft wake vortices form a structurally eudipleural four-vortex system due to the existence of the sweepback angle.The vortex pair at the outer side is induced by the pressure difference between the upper and lower surfaces of the wings.The wingtip vortex is split at the wing by the winglet into two smaller streams of vortices,which are subsequently merged 5 m behind the wingtip.Compared with the movement trend of wake vortices in the absence of crosswind,the aircraft wake vortices move as a whole downstream due to the crosswind to be specific,the 2 m/s crosswind can accelerate the dissipation of wake vortices and is favorable for the reduction of the aircraft wake separation.The 5 m/s crosswind results in significantly increased vorticity of two vortex systems:the wingtip vortex downstream the crosswind and the wing root vortex upstream the crosswind due to the energy input from the crosswind.However,the crosswind at a higher speed can accelerate the deviation of wake vortices,and facilitate the reduction in wake separation of the aircraft taking off and landing on a single-runway airport.展开更多
BACKGROUND: According to observable behaviors, sleep and wakefulness are two fundamentally different behavioral states. Although electroencephalogram (EEG) is traditionally used to define sleep stage, it is difficu...BACKGROUND: According to observable behaviors, sleep and wakefulness are two fundamentally different behavioral states. Although electroencephalogram (EEG) is traditionally used to define sleep stage, it is difficult to detect or to quantify microarousals or disruptions during sleep. In addition initial sleep cannot be defined. It is thought that the wake-sleep transition cannot be defined by EEG patterns. OBJECTIVE: To observe the behavioral response magnitude during wake-sleep transition by EEG monitoring and to define the wake-sleep transition. DESIGN, TIME AND SETTING: A behavioral and neural network study was performed at the Key Lab of Human Being Development and Mental Health of Central China Normal University, and Lab of Brain and Cognitive Science of South Central University for Nationalities, China in July 2007. PARTICIPANTS: A total of 30 healthy volunteers, of equal gender and aged (19.7 ± 1.1 ) years, were recruited from the Central China Normal University, China for this study. None of the subjects had undergone EEG recording prior to this study or received any medication for sleep disturbances. METHODS: A novel adaptive approach was applied to detect wake-sleep transition, which avoided stimulus-induced waking. To test the difference between wake state and wake-sleep transition, the amount of self-information and mutual-information were effective parameters to analyze wake-sleep transition. MAIN OUTCOME MEASURES: The following parameters were measured: morphological changes in reaction time-magnitude, as well as correlation between phase changes and sleep, and wake and wake-sleep transition. RESULTS: There were three typical phases in morphological changes of reaction time-magnitude. With regard to the behavioral definition and criterion for sleep, the phase morphological characteristics displayed good correlation with behavioral states, such as sleep, wakefulness, and sleep onset. Entropy as an indicator of brain cognitive processes was introduced to test for differences between the wakefulness and sleep onset phase. Results indicated a cognitive declined transitional period different between sleep and wake. After staggered cognitive changes during the wake-sleep transition, the brain underwent marked alterations and transitioned into sleep quickly with no bi-directional EEG changes. CONCLUSION: Wake-sleep transition exists as an independent stage.展开更多
Numerous studies have been performed to better understand the behavior of wake vortices with regards to aircraft characteristics and weather conditionsover the pastten years. These studies have led to the development ...Numerous studies have been performed to better understand the behavior of wake vortices with regards to aircraft characteristics and weather conditionsover the pastten years. These studies have led to the development of the aircraft RECATegorization(RECAT) programs in Europe and in USA. Its phase one focused on redefining distance separation matrix with six static aircraft wake turbulence categories instead of three with the current International Civil Aviation Organization(ICAO) regulations. In Europe, the RECAT-EU regulation is now entering under operational implementation atseveral key airports. As proven by several research projects in the past, LIght Detection And Ranging(LIDAR) sensors are considered as the ground truth wake vortex measurements for assessing the safety impact of a new wake turbulence regulation at an airport in quantifying the risks given the local specificities. LIDAR's can also be used to perform risk monitoring after the implementation. In this paper, the principle to measure wake vortices with scanning coherent Doppler LIDARs is described as well as its dedicated post-processing. Finally the use of WINDCUBELIDAR based solution for supporting the implementation of new wake turbulenceregulation is described along with satisfyingresults that have permitted the monitoring of the wake vortex encounter risk after the implementation of a new wake turbulence regulation.展开更多
Aircraft wake turbulence is an inherent outcome of aircraft flight,presenting a substan-tial challenge to air traffic control,aviation safety and operational efficiency.Building upon data obtained from coherent Dopple...Aircraft wake turbulence is an inherent outcome of aircraft flight,presenting a substan-tial challenge to air traffic control,aviation safety and operational efficiency.Building upon data obtained from coherent Doppler Lidar detection,and combining Dynamic Bayesian Networks(DBN)with Genetic Algorithm-optimized Backpropagation Neural Networks(GA-BPNN),this paper proposes a model for the inversion of wake vortex parameters.During the wake vortex flow field simulation analysis,the wind and turbulent environment were initially superimposed onto the simulated wake velocity field.Subsequently,Lidar-detected echoes of the velocity field are simulated to obtain a data set similar to the actual situation for model training.In the case study validation,real measured data underwent preprocessing and were then input into the established model.This allowed us to construct the wake vortex characteristic parameter inversion model.The final results demonstrated that our model achieved parameter inversion with only minor errors.In a practical example,our model in this paper significantly reduced the mean square error of the inverted velocity field when compared to the traditional algorithm.This study holds significant promise for real-time monitoring of wake vortices at airports,and is proved a crucial step in developing wake vortex interval standards.展开更多
The basal ganglia(BG) act as a cohesive functional unit that regulates motor function,habit formation,and reward/addictive behaviors. However,it is still not well understood how the BG maintains wakefulness and suppre...The basal ganglia(BG) act as a cohesive functional unit that regulates motor function,habit formation,and reward/addictive behaviors. However,it is still not well understood how the BG maintains wakefulness and suppresses sleep to achieve al these fundamental functions until genetical y engineered systems developed these years. Significant research efforts have recently been directed at developing genetic-molecular tools to achieve reversible and cell-type specific in vivo silencing or activation of neurons in behaving animals. Optogenetic tools can be used both to specifically activate or inhibit neurons of interest and identify functional synaptic connectivity between specific neuronal populations,both in vivo and in brain slices. Another recently developed system by Roth and colleagues permits the selective and ″remote″ manipulation(activation and silencing) of neuronal activity via all 3 major GPCR signaling pathways(G_i,G_s and G_q). These so-called ″ designer receptors exclusively activated by designer drugs″(DREADD) involve mutant GPCRs that do not respond to their endogenous ligands but are responsive to otherwise inert biological compounds. Recently,we demonstrated the essential roles and the neural pathways of the neurons expressing adenosine A_(2A) receptors or dopamine D_1 receptors in the BG for sleep-wake regulation using the genetically engineered systems including optogenetics and DREADD. We proposed a plausible model in which the caudate-putamen and the nucleus accumbens integrates behavioral processes with sleep/wakefulness through adenosine and dopamine receptors.展开更多
With the increased penetration of wind energy in our nation’s energy portfolio, wind farms are placed in a way close to each other. Thus, their wakes have to be fully considered in the design and operation of a wind ...With the increased penetration of wind energy in our nation’s energy portfolio, wind farms are placed in a way close to each other. Thus, their wakes have to be fully considered in the design and operation of a wind farm. In this study, we investigate the wake of a wind farm using large-eddy simulation with wind turbine rotor modelled by the actuator disk model. The simulated results show that the wake of a wind farm can persist for a long distance in its downstream. For the considered wind farm layout, the velocity in the wake recovers 95% of that of the undisturbed inflow at 55 rotor diameters downstream from its last row, suggesting that the wake of a wind farm should be fully considered in the optimal design and operation for its downstream wind farms.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.52131102.
文摘With the rapid advancement of machine learning technology and its growing adoption in research and engineering applications,an increasing number of studies have embraced data-driven approaches for modeling wind turbine wakes.These models leverage the ability to capture complex,high-dimensional characteristics of wind turbine wakes while offering significantly greater efficiency in the prediction process than physics-driven models.As a result,data-driven wind turbine wake models are regarded as powerful and effective tools for predicting wake behavior and turbine power output.This paper aims to provide a concise yet comprehensive review of existing studies on wind turbine wake modeling that employ data-driven approaches.It begins by defining and classifying machine learning methods to facilitate a clearer understanding of the reviewed literature.Subsequently,the related studies are categorized into four key areas:wind turbine power prediction,data-driven analytic wake models,wake field reconstruction,and the incorporation of explicit physical constraints.The accuracy of data-driven models is influenced by two primary factors:the quality of the training data and the performance of the model itself.Accordingly,both data accuracy and model structure are discussed in detail within the review.
基金supported by the National Natural Science Foundation of China(Nos.U2333209,U1733203)the National Key R&D Program of China(No.2021YFF0603904)the Civil Aviation Administration of China(No.AQ20200019)。
文摘Regional turbofan aircraft,which are used for medium-short distances,have a heightened risk of high-altitude Wake Vortices(VV)because of their tail-mounted engines and high horizontal tail configurations.For some regional medium-short-range turbofan aircraft,this threat is higher than that for conventionally designed aircraft.To analyze the flight safety of turbofan aircraft during cruise,this study developed a model to assess wake vortex encounters based on evolutionary high-altitude wake flow patterns.First,the high-altitude wake vortex aircraft dissipation patterns were analyzed by combining Quick Access Recorder(QAR)flight data with the wake vortex evolution model.Then,to consider the uniqueness of the medium-short-range turbofan aircraft,the severity of the wake vortex encounters was simulated using an induced roll moment coefficient.The proposed high-altitude wake vortex encounter model was able to identify and assess the highaltitude wake vortex changes,the bearing moments at different altitudes,and the atmospheric pressure conditions.Using the latest wake separation standards from the International Civil Aviation Organization(ICAO),acceptable safety wake intervals for follower aircraft in different scenarios were determined for the safety assessment.The results indicate that compared to mid and low altitudes,the high-altitude aircraft wake vortex dissipation rate is faster,the ultimate bearing moment is weaker,and the roll moment coefficient is higher,which confirm that there is elevated wake vortex encounter severity for regional turbofan aircraft.As safety is found to deteriorate when encountering wake vortices at altitudes higher than 8 km,new medium-short-range turbofan regional aircraft require higher safety margins than the latest wake separation standards.
基金The National Natural Science Foundation of China (No. 51908107)。
文摘To enhance the prediction accuracy of unsteady wakes behind wind turbines,a novel reduced-order model is proposed by integrating a multifunctional recurrent fuzzy neural network(MFRFNN)and proper orthogonal decom-position(POD).First,POD is employed to reduce the di-mensionality of the wind field data,extracting spatiotempo-rally correlated modal coefficients and modes.These reduced-order variables can effectively capture the essential features of unsteady wake behaviors.Next,MFRFNN is utilized to predict the time series of modal coefficients.Fi-nally,by combining the predicted modal coefficients with their corresponding modes,a flow field is reconstructed,al-lowing accurate prediction of unsteady wake dynamics.The predicted wake data exhibit high consistency with large eddy simulation results in both the near-and far-wake re-gions and outperform existing data-driven methods.This ap-proach offers significant potential for optimizing wind farm design and provides a new solution for the precise prediction of wind turbine wake behavior.
基金supported by the National Science Foundation under Grant No.2327916.
文摘The sedimentary bed morphology modulated by the wake flow of a wall-mounted flexible aquatic vegetation blade across various structural aspect ratios(A_(R)=l/b,where l and b are the length and width of the blade,respectively)and incoming flow velocities was experimentally investigated in a water channel.A surface scanner was implemented to quantify bed topography,and a tomographic particle image velocimetry system was used to characterize the three-dimensional wake flows.The results showed that due to the deflection of incoming flow,the velocity magnitude increased at the lateral sides of the blade,thereby producing distinctive symmetric scour holes in these regions.The normalized morphology profiles of the sedimentary bed,which were extracted along the streamwise direction at the location of the maximum erosion depth,exhibited a self-similar pattern that closely followed a sinusoidal wave profile.The level of velocity magnitude enhancement was highly correlated to the postures of the flexible blade.At a given flow velocity,the blade with lower aspect ratios exhibited less significant deformation,causing more significant near-bed velocity enhancement in the wake deflection zone and therefore leading to higher erosion volumes.Further investigation indicated that when the blade underwent slight deformation,the larger velocity enhancement close to the bed can be attributed to more significant flow deflection effects at the lateral sides of the blade and stronger flow mixing with high momentum flows away from the bed.Supported with measurements,a basic formula was established to quantify the shear stress acting on the sedimentary bed as a function of incoming flow velocity and blade aspect ratio.
基金supported by the National Natural Science Foundation of China(Grant No.42192552)。
文摘In the Northern Hemisphere,cold wakes induced by tropical cyclones(TCs)are generally biased to the right of the storm track.However,a recent study found that a non-negligible proportion of cold wakes is actually leftward-biased.To further reveal the underlying physical mechanisms,the three-dimensional dynamic processes for the typical leftward cold wake of Hurricane Jova(2005)are investigated through a sequence of numerical simulations.Results reveal that the vertical advection in response to Jova(2005)is biased to the left of its track in the upper layer.In cooperation with the heterogenous ambient oceanic temperature stratification,the rightward vertical mixing is suppressed while the leftward feature of vertical advection is further intensified,which effectively promotes the formation of leftward cold wake.Additionally,the currents induced by Jova(2005)drive colder(warmer)water to the left(right)when coupled with background horizontal temperature gradients and then strengthen the leftward distribution of the temperature anomaly.These conclusions are substantiated by the control simulation,as the upper-layer temperature anomaly is restored to rightward disposition with homogeneous initial thermal structures.Based on three groups of sensitivity experiments,the leftward pattern of upwelling is found to be inextricably accompanied by the curl of wind stress caused by the movement of TCs.With the increase in translation speed from the stationary state,the symmetric structure of vertical velocity is gradually distorted to be leftward.Furthermore,the leftward bias distance of the upwelling center in the upper layer positively correlates with the radius of maximum wind,indicating that the wind structure can significantly influences the oceanic responses to TCs.
基金supported by the National Key R&D Plan Project(No.2019YFD0901003)。
文摘When a ship moves in an oblique flow,its hydrodynamic loads and wake characteristics vary substantially from those in straight-ahead motion.This dissimilarity can be even more complex when the ship operates in a seaway of shallow water.In this paper,a numerical analysis of the shallow-water effect on the hydrodynamic forces and wake characteristics of an international ship model,KVLCC2,in oblique flows is conducted.Numerical simulations are performed based on the Reynolds Averaged NavierStokes equation in conjunction with the shear stress transport(SST)k-ωturbulence model.Four relative water depths(h=1.2T,1.5T,3.0T,and 24T;T is the ship draft)and five different drift angles(β=0°,5°,10°,15°,and 20°)are considered.Results reveal the following:i)The shallow-water effect is strong and leads to nonlinear increases in the longitudinal force regardless of drift angles and on the transverse force and yaw moment whenever the drift angle increases.ii)In shallow water,the mean wake fraction is sensitive to the drift angle,and the strength of the aft-body vortex on the leeward side increases.
基金supported by the National Natural Science Foundation of China(Grant Nos.12072105,11932006,and 52308498)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20220976).
文摘Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)frameworks have recently been employed for forecasting freestream wind and wake fields.However,these PINN frameworks face challenges of low prediction accuracy and long training times.Therefore,this paper constructed a PINN framework for dynamic wake field prediction by integrating two accuracy improvement strategies and a step-by-step training time saving strategy.The results showed that the different performance improvement routes significantly improved the overall performance of the PINN.The accuracy and efficiency of the PINN with spatiotemporal improvement strategies were validated via LiDAR-measured data from a wind farm in Shandong province,China.This paper sheds light on load reduction,efficiency improvement,intelligent operation and maintenance of wind farms.
基金Supported by the Key R&D Program of Shandong Province,China(No.2023ZLYS01)the National Key R&D Program of China(No.2022YFC3104200)+2 种基金the National Natural Science Foundation of China(No.12302301)the China Postdoctoral Science Foundation(No.2023M742229)the Zhejiang Provincial Natural Science Foundation(ZJNSF)(No.LQ22F030002)。
文摘Duo to fluctuations in atmospheric turbulence and yaw control strategies,wind turbines are often in a yaw state.To predict the far wake velocity field of wind turbines quickly and accurately,a wake velocity model was derived based on the method of momentum conservation considering the wake steering of the wind turbine under yaw conditions.To consider the shear effect of the vertical incoming wind direction,a two-dimensional Gaussian distribution function was introduced to model the velocity loss at different axial positions in the far wake region based on the assumption of nonlinear wake expansion.This work also developed a“prediction-correction”method to solve the wake velocity field,and the accuracy of the model results was verified in wake experiments on the Garrad Hassan wind turbine.Moreover,a 33-kW two-blade horizontal axis wind turbine was simulated using this method,and the results were compared with the classical wake model under the same parameters and the computational fluid dynamics(CFD)simulation results.The results show that the nonlinear wake model well reflected the influence of incoming flow shear and yaw wake steering in the wake velocity field.Finally,computation of the wake flow for the Horns Rev offshore wind farm with 80 wind turbines showed an error within 8%compared to the experimental values.The established wake model is less computationally intensive than other methods,has a faster calculation speed,and can be used for engineering calculations of the wake velocity in the far wakefield of wind turbines.
文摘WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be predicted, nonlinear items are added into the linear theory, and the old small angle assumption use d in matrix prediction is removed. All of these enha ncements are aimed at the low speed flight phase and formulations for the induce d velocity field just in the TTP frame are derived. The corresponding FORTRAN pr ogram is tested and optimized for the real time applications on PCs.
基金supported by the Natural Science Foundation of China,No.81260295the Graduate Student Innovation Fund of Jiangxi Province of China,No.YC2015-S090
文摘Orexins, produced in the lateral hypothalamus, are important neuropeptides that participate in the sleep/wake cycle, and their expres- sion coincides with the projection area of the vagus nerve in the brain. Vagus nerve stimulation has been shown to decrease the amounts of daytime sleep and rapid eye movement in epilepsy patients with traumatic brain injury. In the present study, we investigated whether vagus nerve stimulation promotes wakefulness and affects orexin expression. A rat model of traumatic brain injury was established using the free fall drop method. In the stimulated group, rats with traumatic brain injury received vagus nerve stimulation (frequency, 30 Hz, current, 1.0 mA; pulse width, 0.5 ms; total stimulation time, 15 minutes). In the antagonist group, rats with traumatic brain injury were intracerebroventricularly injected with the orexin receptor type 1 (OXIR) antagonist SB334867 and received vagus nerve stimulation. Changes in consciousness were observed after stimulation in each group. Enzyme-linked immunosorbent assay, western blot assay and immunohistochemistry were used to assess the levels of orexin-A and OX1R expression in the prefrontal cortex. In the stimulated group, consciousness was substantially improved, orexin-A protein expression gradually increased within 24 hours after injury and OX1R expres- sion reached a peak at 12 hours, compared with rats subjected to traumatic brain injury only. In the antagonist group, the wake-promoting effect of vagus nerve stimulation was diminished, and orexin-A and OX1R expression were decreased, compared with that of the stim- ulated group. Taken together, our findings suggest that vagus nerve stimulation promotes the recovery of consciousness in comatose rats after traumatic brain injury. The upregulation of orexin-A and OXIR expression in the prefrontal cortex might be involved in the wake-promoting effects of vagus nerve stimulation.
文摘A full-span free-wake method is coupled with an unsteady panel method to accurately predict the unsteady aerodynamics of helicopter rotor blades in hover and forward flight. The unsteady potential-based panel method is used to consider aerodynamics of finite thickness multi-bladed rotors, and the full-span free-wake method is applied to simulating dynamics of rotor wake. These methods are tightly coupled through trailing-edge Kutta condition and by converting doublet-wake panels to full-span vortex filaments. A velocity-field integration technique is also adopted to overcome singularity problem during the interaction between the rotor wake and blades. Helicopter rotors including Caradonna–Tung, UH-60A, and AH-1G rotors, are simulated in hover and forward flight to validate the accuracy of this approach. The predicted aerodynamic loads of rotor blades agree well with available measured data and computational fluid dynamics (CFD) results, and the unsteady dynamics of rotor wake is also well simulated. Compared to CFD, the present method obtains accurate results more efficiently and is suitable to rotorcraft aeroelastic analysis.
文摘This paper describes an improved model of curved vortex element on the circular arc (CVEC) for rotor wake analysis.As the key of the paper,two approximate formulas are derived by the series of limited terms to replace the Legendre incomplete elliptical integrals from the Biot-Savart integration,and the analytical solution of the induced velocity for the CVEC is obtained, which is more efficient in the complex rotor free wake calculation. Furthermore,the approximate formulas with the chosen factors are selected to avoid sigularity and give finite result of the induced velocity on the Vortex line,and an equivalent viscous vortex core radius might be evaluated.As examples, the induced velocity calculations on the vortex ring and two turns of a skew vortex helix are performed, and the comparisons between the circular-arc vortex element and the conventional straightline vortex element (SLVE) are given.It is shown that this curved vortex element model is advantageous over the SLVE model and is suitable for the rotor wake analysis.
文摘In this study,the performance of a twin-screw propeller under the influence of the wake field of a fully appended ship was investigated using a coupled Reynolds-averaged Navier–Stokes(RANS)/boundary element method(BEM)code.The unsteady BEM is an efficient approach to predicting propeller performance.By applying the time-stepping method in the BEM solver,the trailing vortex sheet pattern of the propeller can be accurately captured at each time step.This is the main innovation of the coupled strategy.Furthermore,to ascertain the effect of the wake field of the ship with acceptable accuracy,a RANS solver was developed.A finite volume method was used to discretize the Navier–Stokes equations on fully unstructured grids.To simulate ship motions,the volume of the fluid method was applied to the RANS solver.The validation of each solver(BEM/RANS)was separately performed,and the results were compared with experimental data.Ultimately,the BEM and RANS solvers were coupled to estimate the performance of a twin-screw propeller,which was affected by the wake field of the fully appended hull.The proposed model was applied to a twin-screw oceanography research vessel.The results demonstrated that the presented model can estimate the thrust coefficient of a propeller with good accuracy as compared to an experimental self-propulsion test.The wake sheet pattern of the propeller in open water(uniform flow)was also compared with the propeller in a real wake field.
基金This work was supported by the National Natural Science Foundation of China(Grant No.U1733203)the Civil Aviation Administration of China’s Safety Capability Construction Program(Grant Nos.TM2018-9-1/3 and TM2019-16-1/3).
文摘In order to overcome the typical limitation of earlier studies,where the simulation of aircraft wake vortices was essentially based on the half-model of symmetrical rectangular wings,in the present analysis the entire aircraft(a typical A330-200 aircraft)geometry is taken into account.Conditions corresponding to the nearfield phase(takeoff and landing)are considered assuming a typical attitude angle of 7°and different crosswind intensities,i.e.,0,2 and 5 m/s.The simulation results show that the aircraft wake vortices form a structurally eudipleural four-vortex system due to the existence of the sweepback angle.The vortex pair at the outer side is induced by the pressure difference between the upper and lower surfaces of the wings.The wingtip vortex is split at the wing by the winglet into two smaller streams of vortices,which are subsequently merged 5 m behind the wingtip.Compared with the movement trend of wake vortices in the absence of crosswind,the aircraft wake vortices move as a whole downstream due to the crosswind to be specific,the 2 m/s crosswind can accelerate the dissipation of wake vortices and is favorable for the reduction of the aircraft wake separation.The 5 m/s crosswind results in significantly increased vorticity of two vortex systems:the wingtip vortex downstream the crosswind and the wing root vortex upstream the crosswind due to the energy input from the crosswind.However,the crosswind at a higher speed can accelerate the deviation of wake vortices,and facilitate the reduction in wake separation of the aircraft taking off and landing on a single-runway airport.
文摘BACKGROUND: According to observable behaviors, sleep and wakefulness are two fundamentally different behavioral states. Although electroencephalogram (EEG) is traditionally used to define sleep stage, it is difficult to detect or to quantify microarousals or disruptions during sleep. In addition initial sleep cannot be defined. It is thought that the wake-sleep transition cannot be defined by EEG patterns. OBJECTIVE: To observe the behavioral response magnitude during wake-sleep transition by EEG monitoring and to define the wake-sleep transition. DESIGN, TIME AND SETTING: A behavioral and neural network study was performed at the Key Lab of Human Being Development and Mental Health of Central China Normal University, and Lab of Brain and Cognitive Science of South Central University for Nationalities, China in July 2007. PARTICIPANTS: A total of 30 healthy volunteers, of equal gender and aged (19.7 ± 1.1 ) years, were recruited from the Central China Normal University, China for this study. None of the subjects had undergone EEG recording prior to this study or received any medication for sleep disturbances. METHODS: A novel adaptive approach was applied to detect wake-sleep transition, which avoided stimulus-induced waking. To test the difference between wake state and wake-sleep transition, the amount of self-information and mutual-information were effective parameters to analyze wake-sleep transition. MAIN OUTCOME MEASURES: The following parameters were measured: morphological changes in reaction time-magnitude, as well as correlation between phase changes and sleep, and wake and wake-sleep transition. RESULTS: There were three typical phases in morphological changes of reaction time-magnitude. With regard to the behavioral definition and criterion for sleep, the phase morphological characteristics displayed good correlation with behavioral states, such as sleep, wakefulness, and sleep onset. Entropy as an indicator of brain cognitive processes was introduced to test for differences between the wakefulness and sleep onset phase. Results indicated a cognitive declined transitional period different between sleep and wake. After staggered cognitive changes during the wake-sleep transition, the brain underwent marked alterations and transitioned into sleep quickly with no bi-directional EEG changes. CONCLUSION: Wake-sleep transition exists as an independent stage.
文摘Numerous studies have been performed to better understand the behavior of wake vortices with regards to aircraft characteristics and weather conditionsover the pastten years. These studies have led to the development of the aircraft RECATegorization(RECAT) programs in Europe and in USA. Its phase one focused on redefining distance separation matrix with six static aircraft wake turbulence categories instead of three with the current International Civil Aviation Organization(ICAO) regulations. In Europe, the RECAT-EU regulation is now entering under operational implementation atseveral key airports. As proven by several research projects in the past, LIght Detection And Ranging(LIDAR) sensors are considered as the ground truth wake vortex measurements for assessing the safety impact of a new wake turbulence regulation at an airport in quantifying the risks given the local specificities. LIDAR's can also be used to perform risk monitoring after the implementation. In this paper, the principle to measure wake vortices with scanning coherent Doppler LIDARs is described as well as its dedicated post-processing. Finally the use of WINDCUBELIDAR based solution for supporting the implementation of new wake turbulenceregulation is described along with satisfyingresults that have permitted the monitoring of the wake vortex encounter risk after the implementation of a new wake turbulence regulation.
基金supported by the National Natural Science Foundation of China (No.U2133210).
文摘Aircraft wake turbulence is an inherent outcome of aircraft flight,presenting a substan-tial challenge to air traffic control,aviation safety and operational efficiency.Building upon data obtained from coherent Doppler Lidar detection,and combining Dynamic Bayesian Networks(DBN)with Genetic Algorithm-optimized Backpropagation Neural Networks(GA-BPNN),this paper proposes a model for the inversion of wake vortex parameters.During the wake vortex flow field simulation analysis,the wind and turbulent environment were initially superimposed onto the simulated wake velocity field.Subsequently,Lidar-detected echoes of the velocity field are simulated to obtain a data set similar to the actual situation for model training.In the case study validation,real measured data underwent preprocessing and were then input into the established model.This allowed us to construct the wake vortex characteristic parameter inversion model.The final results demonstrated that our model achieved parameter inversion with only minor errors.In a practical example,our model in this paper significantly reduced the mean square error of the inverted velocity field when compared to the traditional algorithm.This study holds significant promise for real-time monitoring of wake vortices at airports,and is proved a crucial step in developing wake vortex interval standards.
文摘The basal ganglia(BG) act as a cohesive functional unit that regulates motor function,habit formation,and reward/addictive behaviors. However,it is still not well understood how the BG maintains wakefulness and suppresses sleep to achieve al these fundamental functions until genetical y engineered systems developed these years. Significant research efforts have recently been directed at developing genetic-molecular tools to achieve reversible and cell-type specific in vivo silencing or activation of neurons in behaving animals. Optogenetic tools can be used both to specifically activate or inhibit neurons of interest and identify functional synaptic connectivity between specific neuronal populations,both in vivo and in brain slices. Another recently developed system by Roth and colleagues permits the selective and ″remote″ manipulation(activation and silencing) of neuronal activity via all 3 major GPCR signaling pathways(G_i,G_s and G_q). These so-called ″ designer receptors exclusively activated by designer drugs″(DREADD) involve mutant GPCRs that do not respond to their endogenous ligands but are responsive to otherwise inert biological compounds. Recently,we demonstrated the essential roles and the neural pathways of the neurons expressing adenosine A_(2A) receptors or dopamine D_1 receptors in the BG for sleep-wake regulation using the genetically engineered systems including optogenetics and DREADD. We proposed a plausible model in which the caudate-putamen and the nucleus accumbens integrates behavioral processes with sleep/wakefulness through adenosine and dopamine receptors.
基金supported by the National Natural Science Foundation of China(Nos.11988102,12172360)Institute of Mechanics and Chinese Academy of Sciences。
文摘With the increased penetration of wind energy in our nation’s energy portfolio, wind farms are placed in a way close to each other. Thus, their wakes have to be fully considered in the design and operation of a wind farm. In this study, we investigate the wake of a wind farm using large-eddy simulation with wind turbine rotor modelled by the actuator disk model. The simulated results show that the wake of a wind farm can persist for a long distance in its downstream. For the considered wind farm layout, the velocity in the wake recovers 95% of that of the undisturbed inflow at 55 rotor diameters downstream from its last row, suggesting that the wake of a wind farm should be fully considered in the optimal design and operation for its downstream wind farms.