This paper quantitatively explores farmers' vulnerability to flood in the Poyang Lake Region (PLR) with the supports of GIS spatial functions. The analysis consists of three major steps, which is based on the spati...This paper quantitatively explores farmers' vulnerability to flood in the Poyang Lake Region (PLR) with the supports of GIS spatial functions. The analysis consists of three major steps, which is based on the spatial unit of township. Firstly, the spatial extent and characteristics of flood risk areas were determined using a digital elevation model (DEM) derived from the 1:50,000 topographic map. Secondly, for each of the township, six indices indicating the economic activities of local farmers were calculated. These indices are: rural population proportion, cultivated land proportion, GDP per unit area, employment proportion of primary industry, net rural income per capita and agricultural income proportion. These six indices were then normalized and used for later vulnerability assessment. Thirdly, the normalized indices (as GIS data layers) were overlaid with the flood risk areas to produce the risk coefficient for each township and to calculate the overall vulnerability for each township. The analysis results show that in the PLR there are high flood risk areas where the farmers' livings are seriously influenced or threatened. About 55.56% of the total 180 townships in the flood risk areas have a high degree of flood vulnerability. The townships under flood risk are mainly distributed in the areas around the Poyang Lake and the areas along the "five rivers".展开更多
In this paper, form vulnerability theory was applied to the analysis of the failure mechanisms of single-layer latticed spherical shells subjected to seismic excitations. Three 1/10 scale testing models were designed ...In this paper, form vulnerability theory was applied to the analysis of the failure mechanisms of single-layer latticed spherical shells subjected to seismic excitations. Three 1/10 scale testing models were designed with characteristics as follows: Model 1 possesses overall uniform stiffness and is expected to collapse in the strength failure mode as some members become plastic; Model 2 possesses six man-made weak parts located on six radial main rib zones and is expected to collapse in the dynamic in- stability mode with all members still in the elastic stage; Model 3 strengthens the six weak zones of Model 2, and therefore, its stiffness is uniform. Model 3 is proposed to collapse in the strength failure mode when the members are still in the elastic stage By increasing the peak ground accelerations of seismic waves gradually, the shaking table tests were carried out until all three models collapsed (or locally collapsed). On the basis of form vulnerability theory, topological hierarchy models of the test models were established through a clustering process, and various failure scenarios, including overall collapse scenarios and partial collapse scenarios, were identified by unzipping corresponding hierarchical models. By comparison of the failure scenarios based on theoretical analysis and experiments, it was found that vulnerability theory could effectively reflect the weak- ness zones in topological relations of the structures from the perspective of internal causes. The intemal mechanisms of the distinct failure characteristics of reticulated shells subjected to seismic excitations were also revealed in this process. The well-formedness of structural clusters, Q, is closely related to the collapse modes, i.e., uniform changes of Q indicate a uniform distribution of overall structural stiffness, which indicates that strength failure is likely to happen; conversely, non-uniform changes of Q indicate that weak zones exist in the structure, and dynamic instability is likely to occur.展开更多
基金Key Laboratory of Poyang Lake Ecological Environment and Resource Development, No.PK2004017 National Natural Science Foundation of China, No.40561011
文摘This paper quantitatively explores farmers' vulnerability to flood in the Poyang Lake Region (PLR) with the supports of GIS spatial functions. The analysis consists of three major steps, which is based on the spatial unit of township. Firstly, the spatial extent and characteristics of flood risk areas were determined using a digital elevation model (DEM) derived from the 1:50,000 topographic map. Secondly, for each of the township, six indices indicating the economic activities of local farmers were calculated. These indices are: rural population proportion, cultivated land proportion, GDP per unit area, employment proportion of primary industry, net rural income per capita and agricultural income proportion. These six indices were then normalized and used for later vulnerability assessment. Thirdly, the normalized indices (as GIS data layers) were overlaid with the flood risk areas to produce the risk coefficient for each township and to calculate the overall vulnerability for each township. The analysis results show that in the PLR there are high flood risk areas where the farmers' livings are seriously influenced or threatened. About 55.56% of the total 180 townships in the flood risk areas have a high degree of flood vulnerability. The townships under flood risk are mainly distributed in the areas around the Poyang Lake and the areas along the "five rivers".
基金supported by the National Natural Science Foundation of China (Grant No. 90715005)the New Century Excellent Talent of Ministry of Education of China (Grant No. NCET-07-0186)the Doctoral Fund of Ministry of China (Grant No. 200802860007)
文摘In this paper, form vulnerability theory was applied to the analysis of the failure mechanisms of single-layer latticed spherical shells subjected to seismic excitations. Three 1/10 scale testing models were designed with characteristics as follows: Model 1 possesses overall uniform stiffness and is expected to collapse in the strength failure mode as some members become plastic; Model 2 possesses six man-made weak parts located on six radial main rib zones and is expected to collapse in the dynamic in- stability mode with all members still in the elastic stage; Model 3 strengthens the six weak zones of Model 2, and therefore, its stiffness is uniform. Model 3 is proposed to collapse in the strength failure mode when the members are still in the elastic stage By increasing the peak ground accelerations of seismic waves gradually, the shaking table tests were carried out until all three models collapsed (or locally collapsed). On the basis of form vulnerability theory, topological hierarchy models of the test models were established through a clustering process, and various failure scenarios, including overall collapse scenarios and partial collapse scenarios, were identified by unzipping corresponding hierarchical models. By comparison of the failure scenarios based on theoretical analysis and experiments, it was found that vulnerability theory could effectively reflect the weak- ness zones in topological relations of the structures from the perspective of internal causes. The intemal mechanisms of the distinct failure characteristics of reticulated shells subjected to seismic excitations were also revealed in this process. The well-formedness of structural clusters, Q, is closely related to the collapse modes, i.e., uniform changes of Q indicate a uniform distribution of overall structural stiffness, which indicates that strength failure is likely to happen; conversely, non-uniform changes of Q indicate that weak zones exist in the structure, and dynamic instability is likely to occur.