Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,p...Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,phased array waveform shape,interface structure shape,electronic scanning,and mechanical property testing.Results show that the rolling temperature of zirconiumtitanium complex should be controlled at 760°C,and the rolling reduction of each pass should be controlled at 10%–25%.The explosive velocity to prepare zirconium-titanium-steel composite plates should be controlled at 2450–2500 m/s,the density should be 0.78 g/cm3,the stand-off height should be 12 mm,and the explosive height of Zone A and Zone B should be 45–50 mm.Explosive welding combined with rolling method reduces the impact of explosive welding and multiple heat treatment on material properties.Meanwhile,the problems of surface wrinkling and cracking,which occur during the preparation process of large-sized zirconiumtitanium-steel composite plate,can be solved.展开更多
Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipol...Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipolar plates(BPs),one of the core components in PEMWE cells.In this work,NbN coatings are deposited on Ti BPs by magnetron sputtering to improve the corrosion resistance and conductivity,for which the critical process parameters,such as the working pressure,partial nitrogen pressure and de-position temperature are well optimized.It is found that the compact microstructure,highly conductive δ-NbN and uniform nanoparticles play a dominant role in the synergistic improvement of the corrosion resistance and electrical conductivity of NbN coatings.The optimized NbN coatings exhibit excellent cor-rosion resistance with the low corrosion current density of 1.1×10^(-8) A cm^(-2),a high potential value of-0.005 V vs.SCE and a low ICR value of 15.8 mΩcm2@1.5 MPa.Accordingly,NbN coatings can be a promising candidate for the development of the low-cost and high-anti-corrosion Ti BPs of PEMWE.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattic...For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate.展开更多
How the subduction direction of the Paleo-Pacific plate beneath the Eurasian plate changes in the Early Cretaceous remains highly controversial due to the disappearance of the subducted oceanic plate.Intraplate deform...How the subduction direction of the Paleo-Pacific plate beneath the Eurasian plate changes in the Early Cretaceous remains highly controversial due to the disappearance of the subducted oceanic plate.Intraplate deformation structures in the east Asian continent,however,provide excellent opportunities for reconstructing paleostress fields in continental interior in relation to the Paleo-Pacific/Eurasian plate interaction.Anisotropy of magnetic susceptibility(AMS),geological,and geochronological analyses of post-kinematic mafic dykes intruding the detachment fault zone of the Wulian metamorphic core complex(WL MCC)in Jiaodong Peninsula exemplify emplacement of mantle-sourced dykes in a WNW-ESE(301°-121°)oriented tectonic extensional setting at ca.120 Ma.In combination with the results from our previous kinematic analysis of the MCC,a ca.21°clockwise change in the direction of intraplate extension is obtained for early(135-122 Ma)extensional exhumation of the MCC to late(122-108 Ma)emplacement of the dykes.Such a change is suggested to be related to the variation in subduction direction of the Paleo-Pacific plate beneath the Eurasian plate,from westward(pre-122 Ma)to west-northwestward(post-122 Ma).展开更多
TaN coatings were deposited on Ti bipolar plates by magnetron sputtering to improve corrosion resistance and service life.The influence of N_(2) flow rate on the surface morphology,hydrophobicity,crystallinity,corrosi...TaN coatings were deposited on Ti bipolar plates by magnetron sputtering to improve corrosion resistance and service life.The influence of N_(2) flow rate on the surface morphology,hydrophobicity,crystallinity,corrosion resistance,and interfacial contact resistance of TaN coatings was studied.Results show that as the N_(2) flow rate increases,the roughness of TaN coatings decreases firstly and then increases,and the hydrophobicity increases firstly and then decreases.At the N_(2) flow rate of 3 mL/min,TaN coating with larger grain size presents lower roughness and high hydrophobicity.The coating possesses the lowest corrosion current density of 2.82µA·cm^(−2) and the highest corrosion potential of−0.184 V vs.SCE in the simulated proton exchange membrane water electrolyser environment.After a potentiostatic polarization test for 10 h,a few corrosion pits are observed on the TaN coatings deposited at an N_(2) flow rate of 3 mL/min.After 75 h of electrolytic water performance testing,the TaN coating on bipolar plate improves the corrosion resistance and thus enhances the electrolysis efficiency(68.87%),greatly reducing the cost of bipolar plates.展开更多
A theoretical analysis on the perforation of Weldox 460E steel plates struck by flat-nosed projectiles is presented using a previously developed model within a unified framework.This model contains a dimensionless emp...A theoretical analysis on the perforation of Weldox 460E steel plates struck by flat-nosed projectiles is presented using a previously developed model within a unified framework.This model contains a dimensionless empirical equation to describe the variation of energy absorbed through global deformation as a function of impact velocity.The study further investigates the energy absorption mechanisms of Weldox 460E steel plates,with particular focus on the“plateau”phenomenon,i.e.,limited increase in ballistic limit with increasing plate thickness.This phenomenon is explained and compared with results from previously studied 2024-T351 aluminium plates.The model predictions agree well with experimental data for Weldox 460E steel plates impacted by flat-nosed projectiles,including:relationship between global deformation and impact velocity,ballistic limit,residual velocity,and critical conditions for the transition of failure modes.Moreover,the model effectively predicts the“plateau”phenomenon observed in intermediate plate thickness range.It is also found that the indentation absorption energy contributes a significantly larger fraction of the total absorption energy in Weldox 460E steel plates perforated by flat-nosed projectiles than in 2024-T351 aluminium plates,due to the differences in material properties.展开更多
Background and Objectives: The distal radius fracture (DRF) is a major public health problem in northern countries. Its frequency is constantly increasing. The locked anterior plate with its well-established biomechan...Background and Objectives: The distal radius fracture (DRF) is a major public health problem in northern countries. Its frequency is constantly increasing. The locked anterior plate with its well-established biomechanical properties, offers a reliable alternative. The aim of this study was to evaluate the radiological, the functional results and to determine the factors of poor postoperative prognosis of DRF treated with Newclip radial plates®. Methodology: This prospective cohort study evaluates the radiological and functional outcames of displaced radius fractures (DRFs) in patients ≥50 years old treated with Newclip® (locked anterior plates) at the Basse-Terre Hospital in Guadeloupe from 2022 to 2024. The patients were categorized into those with epiphyseal involvement (E1 - E4) and without epiphyseal involvement (E0) based on Laulan’s MEU classification. Radiological parameters (distal radio-ulnar index (DRUI), radial inclination frant view (IRF), radial inclination sagittal view (IRS) were assessed pre and post-operatively. Functional recovery was evaluated at 12 months using the QuickDash questionnaire. Results: Falls were the most common cause of fracture. Post-operatively, SRI was the least restored parameter. Poor prognostic factor for SRI improvement included posterior commimution and unstable fractures. Factors associated with higher QuickDash scores included unstable factures, unrestored DRUI, low plate position, metaphyseal features, and ulnar features. Conclusion: The anterior locking plate osteosynthesis is reliable treatment option with excellent functional outcomes.展开更多
High-performance pure nickel N6/steel 45#composite plate(N6/45#)was prepared using explosive welding technique.The microstructure of the interface and nearby regions was characterized and analyzed by optical microscop...High-performance pure nickel N6/steel 45#composite plate(N6/45#)was prepared using explosive welding technique.The microstructure of the interface and nearby regions was characterized and analyzed by optical microscope,scanning electron microscope,electron backscatter diffraction,and mechanical property testing,and the microstructural features and mechanical properties of the explosive welding interface were explored.The results show that along the direction of explosive welding,the pure nickel N6/steel 45#composite plate interface gradually evolves from a flat bond to a typical wavy bond.The grains at the crests and troughs exhibit high heterogeneity,and the closer to the interface,the finer the grains.Recrystallization and low-stress deformation bands are formed at the bonding interface.Nanoindentation tests reveal that plastic deformation occurs in the interfacial bonding zone,and the nanohardness values in the crest regions are higher than that in the trough regions.The tensile strength of the N6/45#interface is 599.8 MPa,with an average shear strength of 326.3 MPa.No separation phenomenon is observed between N6 and 45#after the bending test.展开更多
As a core power device in strategic industries such as new energy power generation and electric vehicles,the thermal reliability of IGBT modules directly determines the performance and lifetime of the whole system.A s...As a core power device in strategic industries such as new energy power generation and electric vehicles,the thermal reliability of IGBT modules directly determines the performance and lifetime of the whole system.A synergistic optimization structure of“inlet plate-channel spoiler columns”is proposed for the local hot spot problem during the operation of Insulated Gate Bipolar Transistor(IGBT),combined with the inherent defect of uneven flow distribution of the traditional U-type liquid cooling plate in this paper.The influences of the shape,height(H),and spacing from the spoiler column(b)of the plate on the comprehensive heat dissipation performance of the liquid cooling plate are analyzed at different Reynolds numbers,A dual heat source strategy is introduced and the effect of the optimized structure is evaluated by the temperature inhomogeneity coefficient(Φ).The results show that the optimum effect is achieved when the shape of the plate is square,H=4.5 mm,b=2 mm,and u=0.05 m/s,at which the HTPE=1.09 and Φ are reduced by 40%.In contrast,the maximum temperatures of the IGBT and the FWD(Free Wheeling Diode)chips are reduced by 8.7 and 8.4 K,respectively,and ΔP rises by only 1.58 Pa while keeping ΔT not significantly increased.This optimized configuration achieves a significant reduction in the critical chip temperature and optimization of the flow field uniformity with almost no change in the system flow resistance.It breaks through the limitation of single structure optimization of the traditional liquid cooling plate and effectively solves the problem of uneven flow in the U-shaped cooling plate,which provides a new solution with important engineering value for the thermal management of IGBT modules.展开更多
On February 8,2025,a remote area in the Caribbean Sea was rocked by a large M_(W)7.6(USGS,2025) earthquake,centered 209 km SSW of Georgetown,the capital of the Cayman Islands,and the largest city(population~41 000) of...On February 8,2025,a remote area in the Caribbean Sea was rocked by a large M_(W)7.6(USGS,2025) earthquake,centered 209 km SSW of Georgetown,the capital of the Cayman Islands,and the largest city(population~41 000) of the British Overseas Territories(Figure 1).The earthquake was significant due to its large magnitude,potential regional impact,and the possibility of generating a tsunami.展开更多
[Background and purposes]Proton exchange membrane fuel cells(PEMFCs),which convert hydrogen energy directly into electrical energy and water,have received overwhelming attention,owing to their potential to significant...[Background and purposes]Proton exchange membrane fuel cells(PEMFCs),which convert hydrogen energy directly into electrical energy and water,have received overwhelming attention,owing to their potential to significantly reduce energy consumption,pollution emissions and reliance on fossil fuels.Bipolar plates are the major part and key component of PEMFCs stack,which provide mechanical strength,collect and conduct current segregate oxidants and reduce agents.They contribute 70-80%weight and 20-30%cost of a whole stack,while significantly affecting the power density.There are three types plates,including metal bipolar plate,graphite bipolar plate and composite bipolar plate.Stainless steel bipolar plates,as one of metal bipolar plate,exhibit promising manufacturability,competitive cost and durability among various metal materials.However,stainless steel would be corroded in the harsh acid(pH 2-5)and humid PEMFCs environment,whereas the leached ions will contaminate the membrane.In addition,the passivated film formed on the surface will increase the interfacial contact resistance(ICR).In order to improve the corrosion resistance and electrical conductivity of steel bipolar plates,surface coatings are essential.Metal nitride coatings,metal carbide coatings,polymer coatings and carbon-based coatings have been introduced in recent years.Carbon-based coatings,mainly including a-C(amorphous Carbon),Ta-C(Tetrahedral amorphous carbon)and DLC(diamond-like carbon),have attracted considerable attention from both academia and industry,owing to their superior performance,such as chemical inertness,mechanical hardness and electrical conductivity.However,Ta-C films as protective coating of PEMFCs have been rarely reported,due to the difficulty in production for industrial application.In this paper,multi-layer Ta-C composite films were produced by using customized industrial-scale vacuum equipment to address those issues.[Methods]Multiple layered Ta-C coatings were prepared by using PIS624 equipment,which assembled filtered cathodic arc evaporation,ion beam and magnetron sputtering into one equipment,while SS304 and silicon specimens were used as substrate for testing and analysis.Adhesion layer and intermediate layer were deposited by using magnetron sputtering at deposition temperature of 150℃and pressure of 3×10^(−1) Pa,while the sputtering current was set to be 5 A and bias power to be 300 V.The Ta-C layer was coated at arc current of 80-100 A,bias voltage of 1500 V and gas flow of 75 sccm.A scanning electron microscope(CIQTEK SEM3200)was used to characterize surface morphology,coating structure and cross-section profile of the coatings.Raman spectrometer(LabRam HR Evolution,HORIBA JOBIN YVON)was used to identify the bonding valence states.Electrochemical tests were performed by using an electrochemical work station(CHI760,Shanghai Chenhua Instrument Co.,Ltd.),with the traditional three electrode system,where saturated Ag/AgCl and platinum mesh were used as the reference electrode and counter electrode,respectively.All samples were mounted in plastic tube and sealed with epoxy resin,with an exposure area of 2.25 cm^(2),serving as the working electrode.Electrochemical measurements were carried out in simulated PEMFCs cathode environment in 0.5 mol·L^(−1) H_(2)SO_(4)+5 ppm F−solution,at operating temperature of 70℃.As the cathode environment was harsher than the anode environment,all the samples are stabilized at the open-circuit potential(OCP)for approximately 30 min before the EIS measurements.ICR between bipolar plates and GDL was a key parameter affecting performance of the PEMFCs stack.The test sample sandwiched between 2 pieces of carbon paper(simulate gas diffusion layer,GDL)was placed between 2 gold-plated copper electrodes at a compaction pressure of 1.4 MPa,which was considered to be the conventional compaction pressure in the PEMFCs.Under the same conditions,the resistance of a single carbon paper was measured as well.The ICR was calculated according to the formula ICR=1/2(R2−R1)×S,where S was the contact area between GDL and coated stainless steel BPPs.All data of ICR were measured three times for averaging.[Results]The coatings deposited by filtered cathodic arc technology were compact and smooth,which reduced coating porosity and favorable to corrosion resistance.The coating thickness of adhesion and intermediate layers were 180 nm,while the protective Ta-C coating thickness was about 300 nm,forming multiple coating to provide stronger protection for metal bipolar plates.Cr,Ti,Nb and Ta coatings were selected as adhesion layers for comparison.According to electrochemical test,Ta and Nb coatings have higher corrosion resistance.However,Ta and Nb materials would be costly when they are used for mass production.Relatively,Cr and Ti materials were cost effective.Hence,a comprehensive assessment was indispensable to decide the materials to be selected as adhesion layer.Ta-TiN and Ti-TiN combined adhesion and intermediate layer exhibited stronger corrosion resistance,with the corrosion current to be less than 10^(−6) A·cm^(−2).Ta-C protective coating deposited by using filtered cathodic arc technology indicated displayed higher corrosion resistance,with the average corrosion density to be about 1.26×10^(−7) A·cm^(−2).Ta-C coating also shown larger contact angle,with the highest hydrophobicity,which was one of the important advantages for Ta-C,in terms of corrosion resistance.According to Raman spectroscopy,the I(D)/I(G)=549.8/1126.7=0.487,with the estimated fraction of sp^(3) bonding to be in the range of 5154%.The intermediate layer TiN has higher conductivity than the CrN layer.Considering cost,corrosion performance and ICR result,the Ti-TiN layer combination is recommended for industrial scale application.[Conclusions]Multiple layer coating structure of Ta-C film had stronger corrosion resistance;with more than 50%sp^(3) content,while it also had larger water contact angle and higher corrosion resistance than DLC film.The filtered arcing deposition technology was able to make the film to be more consistent and stable than normal arcing technology in terms of the preparation of Ta-C.The coating displayed corrosion density of 1.26×10^(−7) A·cm^(−2) and ICR of less than 5 mΩ·cm^(2),far beyond technical target of 2025 DOE(US Department of Energy).This indicated that the mass-production scale coating technology for PEMFC bipolar plates is highly possible.展开更多
Burnup measurement is crucial for the management and disposal of spent fuel.The conventional approach indirectly estimates burnup by examining the fission product or actinide content.Compared to the first two methods,...Burnup measurement is crucial for the management and disposal of spent fuel.The conventional approach indirectly estimates burnup by examining the fission product or actinide content.Compared to the first two methods,the active neutron method exhibits a lower dependence on the irradiation history and initial enrichment degree of the spent fuel.In addition,it can be used to directly determine the content of fissile nuclides in spent fuel.This study proposed the design of a burnup measurement equipment specifically crafted for plate segments by utilizing a compact D-D neutron generator.The equipment initiates the fission of fissile nuclides within the spent fuel plate segment through thermal neutrons provided by the moderators.Subsequently,the burnup is determined by analyzing the transmitted thermal neutrons and counting the fission fast neutrons.The Monte Carlo program Geant4 was used to simulate the relationship between spent fuel plate segment assembly burnup and the detector count of 10 MW material test reactor designed by the International Atomic Energy Agency.Consequently,the feasibility of the method and rationality of the detector design were verified.展开更多
The penetration of ogival-nosed projectiles into ship plates represents a complex impact dynamics issue essential for analyzing structural failuremechanisms.Although stiffenedplates are vital in ship construction,fews...The penetration of ogival-nosed projectiles into ship plates represents a complex impact dynamics issue essential for analyzing structural failuremechanisms.Although stiffenedplates are vital in ship construction,fewstudies have addressed the issue of model equivalence under penetration loading.This study employs numerical simulation to validate an experiment with an ogival-nosed projectile penetrating a Q345 steel plate.Four equivalent stiffened plate methods are proposed based on the area,flexural modulus,moment of inertia,and thickness.The results indicate that thickness equivalence(DM4)is unsuitable for penetration-loaded stiffened plates,except under low-speed,nonpenetrating through impacts,and yields less accuracy than DM1/DM3.DM1,DM2,and DM3 each perform optimally with specific velocity ranges:DM1 at very low(critical)and high velocities,DM3 at low velocities,and DM2 at high speeds.Furthermore,in penetration scenarios,T-shaped stiffeners can be replacedwith rectangular ones,as both exhibit similar failure behaviors and deflection trends,simplifying the design while preserving key structural characteristics.These findings provide valuable insights into the design of protective ship structures.展开更多
Proton exchange membrane fuel cells(PEMFCs)have gained increasing interests as promising power sources due to their ability to convert hydrogen and oxygen directly into electricity with high efficiency and zero greenh...Proton exchange membrane fuel cells(PEMFCs)have gained increasing interests as promising power sources due to their ability to convert hydrogen and oxygen directly into electricity with high efficiency and zero greenhouse gas emissions.Bipolar plates(BPs)are considered as a critical component of PEMFCs,serving to collect current,separate gases,distribute the flow field,and conduct heat.This paper reviews the technical status and advancements in BP materials,with special focus on strategies for enhancing interfacial contact resistance(ICR)and corrosion resistance through conductive polymer(CP)coatings.First,commonly used BP materials in PEMFCs are summarized.Then,the advantages and limitations of various coatings for metallic BPs are discussed.Finally,recent progress in CP coatings for metallic BPs,aimed at achieving high corrosion resistance and low ICR,is comprehensively reviewed.展开更多
A lightweight composite resonator,consisting of a soft material acoustic black hole(SABH)and multiple vibration absorbers,is embedded in a plate to achieve localization and absorption of low-frequency vibration energy...A lightweight composite resonator,consisting of a soft material acoustic black hole(SABH)and multiple vibration absorbers,is embedded in a plate to achieve localization and absorption of low-frequency vibration energy.The combination of local and global admissible functions for displacement enhances the accuracy of the Ritz method in predicting vibration localization characteristics within the SABH domain.Utilizing soft materials for the SABH can reduce the mass and frequency of the composite resonator.Due to the lack of orthogonality between global vibration modes and localized modes,the low-frequency localized modes induced by the SABH are used to shape the initial global modes,thereby concentrating the global vibration of the plate in the SABH region.Consequently,the absorbers of the composite resonator only need to be a small fraction of the mass of the local SABH to achieve substantial vibration control of the host plate.This vibration localization strategy can significantly reduce the vibration amplitude of the host plate and enhance the effectiveness of lightweight absorbers in vibration reduction.展开更多
The influences of different factors,including whether the transverse frames are actually built,longitudinal and transverse welding residual stresses,and unloaded edge boundaries,on the ultimate strength and failure mo...The influences of different factors,including whether the transverse frames are actually built,longitudinal and transverse welding residual stresses,and unloaded edge boundaries,on the ultimate strength and failure mode of a real hull bottom full-scale stiffened plate under axial compression and lateral pressure are investigated via numerical analysis.Result shows that the failure mode of the stiffened plate under axial compression is the tripping of the stiffeners.Whether transverse frames are built has little effect on the ultimate strength of the stiffened plate under axial compression,which can be replaced by the degree of freedom constraint.However,when lateral pressure is present,the transverse frame cannot be simply replaced by a free-degree constraint.The longitudinal residual stress has a greater effect on the ultimate strength,whereas the effect of the transverse residual stress is smaller.Stronger unloaded edge boundary conditions can slightly enhance the stiffness and ultimate strength of the stiffened plate.Under combined axial compression and lateral pressure,the failure mode of stiffened plates changes from the tripping of stiffeners to beam-column failure,as the lateral pressure increases.The ability of stiffened plates in which transverse frames are actually built out to resist beam-column shape deformation becomes weaker with lower ultimate strength.Stronger unloaded edge boundary conditions can improve the ability of stiffened plates to resist beam-column deformation and increase the ultimate strength.展开更多
Achieving exact printing fidelity in polymer-based bone regeneration scaffolds through additive manufacturing,particularly those of dispensing-type,remains a significant challenge.During fabrication,scaffolds often de...Achieving exact printing fidelity in polymer-based bone regeneration scaffolds through additive manufacturing,particularly those of dispensing-type,remains a significant challenge.During fabrication,scaffolds often deviate from the intended design geometry,which can negatively affect their performance.Additionally,achieving mechanical properties similar to natural bone in scaffolds remains challenging.Therefore,this study introduces the Hybrid Modified Cubic-Honeycomb Plate(hybrid MCHP)structure to improve printing fidelity and mechanical properties over previous bone regeneration scaffolds through innovative geometry design.This hybrid MCHP scaffold was inspired by cubic honeycomb and plate-lattice structures due to their excellent mechanical performance and well-optimized geometry,which ensure optimal printability.The effective elastic stiffness of the proposed structure and control group was predicted using a numerical Asymptotic Expansion Homogenization(AEH)model.Bone regeneration scaffolds were fabricated using Polycaprolactone(PCL)and a 3D printer with a Precision Extrusion Deposition(PED)system.Printing fidelity in manufactured scaffolds was then evaluated,resulting in a printing fidelity of 97.93±1.1%for the hybrid MCHP-structure scaffold(compared to 82.31±3.6%and 92.00±2.5%in the case of Kagome-structure and modified honeycomb(MHC)-structure scaffolds,which are the control groups).Mechanical testing of the hybrid MCHP-structure scaffold using a Universal Testing Machine(UTM)depicted similarity with 91.1%of the numerical estimated effective elastic stiffness(compared to 82.8%and 79.0%in the case of Kagome-structure and MHC-structure scaffolds,which serve as the control groups).The biological potential of the scaffolds was evaluated through in vitro studies using MC3T3-E1 pre-osteoblasts.The CCK-8 assay showed significantly enhanced cell viability and proliferation on the hybrid MCHP scaffold at all time points(days 1,7,and 14),consistently outperforming the Kagome and MHC scaffolds.Additionally,immunofluorescence staining analysis revealed abundant focal adhesions and uniform nuclear distribution,highlighting the superior cytocompatibility and effective support for cellular activity of the hybrid MCHP scaffold.展开更多
This paper studies the vibration responses of porous functionally graded(FG)thin plates with four various types of porous distribution based on the physical neutral plane by employing the peridynamic differential oper...This paper studies the vibration responses of porous functionally graded(FG)thin plates with four various types of porous distribution based on the physical neutral plane by employing the peridynamic differential operator(PDDO).It is assumed that density and elastic modulus continuously vary along the transverse direction following the power law distribution for porous FG plates.The governing differential equation of free vibration for a porous rectangular FG plate and its associated boundary conditions are expressed by a Lévy-type solution based on nonlinear von Karman plate theory.Dimensionless frequencies and mode shapes are obtained after solving the characteristic equations established by PDDO.The results of the current method are validated through comparison with existing literature.The effects of geometric parameters,material properties,elastic foundation,porosity distribution,and boundary conditions on the frequency are investigated and discussed in detail.The highest fundamental dimensionless frequency occurs under SCSC boundary conditions,while the lowest is under SFSF boundary conditions.The porous FG plate with the fourth pore type,featuring high density of porosity at the top and low at the bottom,exhibits the highest fundamental frequency under SSSS,SFSF,and SCSC boundary conditions.The dimensionless frequency increases with an increase in the elastic foundation stiffness coefficient.展开更多
基金Key R&D Plan of Shaanxi Province(2021LLRH-05-09)Shaanxi Province Youth Talent Support Program Project(CLGC202234)Sponsored by Innovative Pilot Platform for Layered Metal Composite Materials(2024CX-GXPT-20)。
文摘Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,phased array waveform shape,interface structure shape,electronic scanning,and mechanical property testing.Results show that the rolling temperature of zirconiumtitanium complex should be controlled at 760°C,and the rolling reduction of each pass should be controlled at 10%–25%.The explosive velocity to prepare zirconium-titanium-steel composite plates should be controlled at 2450–2500 m/s,the density should be 0.78 g/cm3,the stand-off height should be 12 mm,and the explosive height of Zone A and Zone B should be 45–50 mm.Explosive welding combined with rolling method reduces the impact of explosive welding and multiple heat treatment on material properties.Meanwhile,the problems of surface wrinkling and cracking,which occur during the preparation process of large-sized zirconiumtitanium-steel composite plate,can be solved.
基金supported by the National Key Re-search and Development Program of China(No.2022YFB4002100)the National Natural Science Foundation of China(No.52271136)the Natural Science Foundation of Shaanxi Province(Nos.2019TD-020 and 2021JC-06).
文摘Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipolar plates(BPs),one of the core components in PEMWE cells.In this work,NbN coatings are deposited on Ti BPs by magnetron sputtering to improve the corrosion resistance and conductivity,for which the critical process parameters,such as the working pressure,partial nitrogen pressure and de-position temperature are well optimized.It is found that the compact microstructure,highly conductive δ-NbN and uniform nanoparticles play a dominant role in the synergistic improvement of the corrosion resistance and electrical conductivity of NbN coatings.The optimized NbN coatings exhibit excellent cor-rosion resistance with the low corrosion current density of 1.1×10^(-8) A cm^(-2),a high potential value of-0.005 V vs.SCE and a low ICR value of 15.8 mΩcm2@1.5 MPa.Accordingly,NbN coatings can be a promising candidate for the development of the low-cost and high-anti-corrosion Ti BPs of PEMWE.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
文摘For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate.
基金supported by the National Natural Science Foundation of China(Grant Nos:42130801,41430211,90814006,and 42072226)the“Deep-time Digital Earth”Science and Technology Leading Talents Team Funds for the Central Universities for the Frontiers Science Center for Deep-time Digital Earth,CUGB(Fundamental Research Funds for the Central UniversitiesGrant No:2652023001).
文摘How the subduction direction of the Paleo-Pacific plate beneath the Eurasian plate changes in the Early Cretaceous remains highly controversial due to the disappearance of the subducted oceanic plate.Intraplate deformation structures in the east Asian continent,however,provide excellent opportunities for reconstructing paleostress fields in continental interior in relation to the Paleo-Pacific/Eurasian plate interaction.Anisotropy of magnetic susceptibility(AMS),geological,and geochronological analyses of post-kinematic mafic dykes intruding the detachment fault zone of the Wulian metamorphic core complex(WL MCC)in Jiaodong Peninsula exemplify emplacement of mantle-sourced dykes in a WNW-ESE(301°-121°)oriented tectonic extensional setting at ca.120 Ma.In combination with the results from our previous kinematic analysis of the MCC,a ca.21°clockwise change in the direction of intraplate extension is obtained for early(135-122 Ma)extensional exhumation of the MCC to late(122-108 Ma)emplacement of the dykes.Such a change is suggested to be related to the variation in subduction direction of the Paleo-Pacific plate beneath the Eurasian plate,from westward(pre-122 Ma)to west-northwestward(post-122 Ma).
基金National Key Research and Development Program of China(2022YFB4002100)National Natural Science Foundation of China(52271136)Natural Science Foundation of Shaanxi Province(2021JC-06)。
文摘TaN coatings were deposited on Ti bipolar plates by magnetron sputtering to improve corrosion resistance and service life.The influence of N_(2) flow rate on the surface morphology,hydrophobicity,crystallinity,corrosion resistance,and interfacial contact resistance of TaN coatings was studied.Results show that as the N_(2) flow rate increases,the roughness of TaN coatings decreases firstly and then increases,and the hydrophobicity increases firstly and then decreases.At the N_(2) flow rate of 3 mL/min,TaN coating with larger grain size presents lower roughness and high hydrophobicity.The coating possesses the lowest corrosion current density of 2.82µA·cm^(−2) and the highest corrosion potential of−0.184 V vs.SCE in the simulated proton exchange membrane water electrolyser environment.After a potentiostatic polarization test for 10 h,a few corrosion pits are observed on the TaN coatings deposited at an N_(2) flow rate of 3 mL/min.After 75 h of electrolytic water performance testing,the TaN coating on bipolar plate improves the corrosion resistance and thus enhances the electrolysis efficiency(68.87%),greatly reducing the cost of bipolar plates.
文摘A theoretical analysis on the perforation of Weldox 460E steel plates struck by flat-nosed projectiles is presented using a previously developed model within a unified framework.This model contains a dimensionless empirical equation to describe the variation of energy absorbed through global deformation as a function of impact velocity.The study further investigates the energy absorption mechanisms of Weldox 460E steel plates,with particular focus on the“plateau”phenomenon,i.e.,limited increase in ballistic limit with increasing plate thickness.This phenomenon is explained and compared with results from previously studied 2024-T351 aluminium plates.The model predictions agree well with experimental data for Weldox 460E steel plates impacted by flat-nosed projectiles,including:relationship between global deformation and impact velocity,ballistic limit,residual velocity,and critical conditions for the transition of failure modes.Moreover,the model effectively predicts the“plateau”phenomenon observed in intermediate plate thickness range.It is also found that the indentation absorption energy contributes a significantly larger fraction of the total absorption energy in Weldox 460E steel plates perforated by flat-nosed projectiles than in 2024-T351 aluminium plates,due to the differences in material properties.
文摘Background and Objectives: The distal radius fracture (DRF) is a major public health problem in northern countries. Its frequency is constantly increasing. The locked anterior plate with its well-established biomechanical properties, offers a reliable alternative. The aim of this study was to evaluate the radiological, the functional results and to determine the factors of poor postoperative prognosis of DRF treated with Newclip radial plates®. Methodology: This prospective cohort study evaluates the radiological and functional outcames of displaced radius fractures (DRFs) in patients ≥50 years old treated with Newclip® (locked anterior plates) at the Basse-Terre Hospital in Guadeloupe from 2022 to 2024. The patients were categorized into those with epiphyseal involvement (E1 - E4) and without epiphyseal involvement (E0) based on Laulan’s MEU classification. Radiological parameters (distal radio-ulnar index (DRUI), radial inclination frant view (IRF), radial inclination sagittal view (IRS) were assessed pre and post-operatively. Functional recovery was evaluated at 12 months using the QuickDash questionnaire. Results: Falls were the most common cause of fracture. Post-operatively, SRI was the least restored parameter. Poor prognostic factor for SRI improvement included posterior commimution and unstable fractures. Factors associated with higher QuickDash scores included unstable factures, unrestored DRUI, low plate position, metaphyseal features, and ulnar features. Conclusion: The anterior locking plate osteosynthesis is reliable treatment option with excellent functional outcomes.
基金Natural Science Foundation of Shanxi Province(202203021221149)Key Research and Development Program of Shanxi Province(202302010101006,202202150401016)+1 种基金Scientific Research Start-up Fund for the Introduction of Talents in Shanxi Institute of Electronic Science and Technology(2023RKJ021)Key R&D Program of Linfen City(2334)。
文摘High-performance pure nickel N6/steel 45#composite plate(N6/45#)was prepared using explosive welding technique.The microstructure of the interface and nearby regions was characterized and analyzed by optical microscope,scanning electron microscope,electron backscatter diffraction,and mechanical property testing,and the microstructural features and mechanical properties of the explosive welding interface were explored.The results show that along the direction of explosive welding,the pure nickel N6/steel 45#composite plate interface gradually evolves from a flat bond to a typical wavy bond.The grains at the crests and troughs exhibit high heterogeneity,and the closer to the interface,the finer the grains.Recrystallization and low-stress deformation bands are formed at the bonding interface.Nanoindentation tests reveal that plastic deformation occurs in the interfacial bonding zone,and the nanohardness values in the crest regions are higher than that in the trough regions.The tensile strength of the N6/45#interface is 599.8 MPa,with an average shear strength of 326.3 MPa.No separation phenomenon is observed between N6 and 45#after the bending test.
基金supported by Tianjin Science and Technology Planning Project(22YDTPJC0020).
文摘As a core power device in strategic industries such as new energy power generation and electric vehicles,the thermal reliability of IGBT modules directly determines the performance and lifetime of the whole system.A synergistic optimization structure of“inlet plate-channel spoiler columns”is proposed for the local hot spot problem during the operation of Insulated Gate Bipolar Transistor(IGBT),combined with the inherent defect of uneven flow distribution of the traditional U-type liquid cooling plate in this paper.The influences of the shape,height(H),and spacing from the spoiler column(b)of the plate on the comprehensive heat dissipation performance of the liquid cooling plate are analyzed at different Reynolds numbers,A dual heat source strategy is introduced and the effect of the optimized structure is evaluated by the temperature inhomogeneity coefficient(Φ).The results show that the optimum effect is achieved when the shape of the plate is square,H=4.5 mm,b=2 mm,and u=0.05 m/s,at which the HTPE=1.09 and Φ are reduced by 40%.In contrast,the maximum temperatures of the IGBT and the FWD(Free Wheeling Diode)chips are reduced by 8.7 and 8.4 K,respectively,and ΔP rises by only 1.58 Pa while keeping ΔT not significantly increased.This optimized configuration achieves a significant reduction in the critical chip temperature and optimization of the flow field uniformity with almost no change in the system flow resistance.It breaks through the limitation of single structure optimization of the traditional liquid cooling plate and effectively solves the problem of uneven flow in the U-shaped cooling plate,which provides a new solution with important engineering value for the thermal management of IGBT modules.
文摘On February 8,2025,a remote area in the Caribbean Sea was rocked by a large M_(W)7.6(USGS,2025) earthquake,centered 209 km SSW of Georgetown,the capital of the Cayman Islands,and the largest city(population~41 000) of the British Overseas Territories(Figure 1).The earthquake was significant due to its large magnitude,potential regional impact,and the possibility of generating a tsunami.
基金Major Science and technology projects of Anhui Province (202103a05020003)。
文摘[Background and purposes]Proton exchange membrane fuel cells(PEMFCs),which convert hydrogen energy directly into electrical energy and water,have received overwhelming attention,owing to their potential to significantly reduce energy consumption,pollution emissions and reliance on fossil fuels.Bipolar plates are the major part and key component of PEMFCs stack,which provide mechanical strength,collect and conduct current segregate oxidants and reduce agents.They contribute 70-80%weight and 20-30%cost of a whole stack,while significantly affecting the power density.There are three types plates,including metal bipolar plate,graphite bipolar plate and composite bipolar plate.Stainless steel bipolar plates,as one of metal bipolar plate,exhibit promising manufacturability,competitive cost and durability among various metal materials.However,stainless steel would be corroded in the harsh acid(pH 2-5)and humid PEMFCs environment,whereas the leached ions will contaminate the membrane.In addition,the passivated film formed on the surface will increase the interfacial contact resistance(ICR).In order to improve the corrosion resistance and electrical conductivity of steel bipolar plates,surface coatings are essential.Metal nitride coatings,metal carbide coatings,polymer coatings and carbon-based coatings have been introduced in recent years.Carbon-based coatings,mainly including a-C(amorphous Carbon),Ta-C(Tetrahedral amorphous carbon)and DLC(diamond-like carbon),have attracted considerable attention from both academia and industry,owing to their superior performance,such as chemical inertness,mechanical hardness and electrical conductivity.However,Ta-C films as protective coating of PEMFCs have been rarely reported,due to the difficulty in production for industrial application.In this paper,multi-layer Ta-C composite films were produced by using customized industrial-scale vacuum equipment to address those issues.[Methods]Multiple layered Ta-C coatings were prepared by using PIS624 equipment,which assembled filtered cathodic arc evaporation,ion beam and magnetron sputtering into one equipment,while SS304 and silicon specimens were used as substrate for testing and analysis.Adhesion layer and intermediate layer were deposited by using magnetron sputtering at deposition temperature of 150℃and pressure of 3×10^(−1) Pa,while the sputtering current was set to be 5 A and bias power to be 300 V.The Ta-C layer was coated at arc current of 80-100 A,bias voltage of 1500 V and gas flow of 75 sccm.A scanning electron microscope(CIQTEK SEM3200)was used to characterize surface morphology,coating structure and cross-section profile of the coatings.Raman spectrometer(LabRam HR Evolution,HORIBA JOBIN YVON)was used to identify the bonding valence states.Electrochemical tests were performed by using an electrochemical work station(CHI760,Shanghai Chenhua Instrument Co.,Ltd.),with the traditional three electrode system,where saturated Ag/AgCl and platinum mesh were used as the reference electrode and counter electrode,respectively.All samples were mounted in plastic tube and sealed with epoxy resin,with an exposure area of 2.25 cm^(2),serving as the working electrode.Electrochemical measurements were carried out in simulated PEMFCs cathode environment in 0.5 mol·L^(−1) H_(2)SO_(4)+5 ppm F−solution,at operating temperature of 70℃.As the cathode environment was harsher than the anode environment,all the samples are stabilized at the open-circuit potential(OCP)for approximately 30 min before the EIS measurements.ICR between bipolar plates and GDL was a key parameter affecting performance of the PEMFCs stack.The test sample sandwiched between 2 pieces of carbon paper(simulate gas diffusion layer,GDL)was placed between 2 gold-plated copper electrodes at a compaction pressure of 1.4 MPa,which was considered to be the conventional compaction pressure in the PEMFCs.Under the same conditions,the resistance of a single carbon paper was measured as well.The ICR was calculated according to the formula ICR=1/2(R2−R1)×S,where S was the contact area between GDL and coated stainless steel BPPs.All data of ICR were measured three times for averaging.[Results]The coatings deposited by filtered cathodic arc technology were compact and smooth,which reduced coating porosity and favorable to corrosion resistance.The coating thickness of adhesion and intermediate layers were 180 nm,while the protective Ta-C coating thickness was about 300 nm,forming multiple coating to provide stronger protection for metal bipolar plates.Cr,Ti,Nb and Ta coatings were selected as adhesion layers for comparison.According to electrochemical test,Ta and Nb coatings have higher corrosion resistance.However,Ta and Nb materials would be costly when they are used for mass production.Relatively,Cr and Ti materials were cost effective.Hence,a comprehensive assessment was indispensable to decide the materials to be selected as adhesion layer.Ta-TiN and Ti-TiN combined adhesion and intermediate layer exhibited stronger corrosion resistance,with the corrosion current to be less than 10^(−6) A·cm^(−2).Ta-C protective coating deposited by using filtered cathodic arc technology indicated displayed higher corrosion resistance,with the average corrosion density to be about 1.26×10^(−7) A·cm^(−2).Ta-C coating also shown larger contact angle,with the highest hydrophobicity,which was one of the important advantages for Ta-C,in terms of corrosion resistance.According to Raman spectroscopy,the I(D)/I(G)=549.8/1126.7=0.487,with the estimated fraction of sp^(3) bonding to be in the range of 5154%.The intermediate layer TiN has higher conductivity than the CrN layer.Considering cost,corrosion performance and ICR result,the Ti-TiN layer combination is recommended for industrial scale application.[Conclusions]Multiple layer coating structure of Ta-C film had stronger corrosion resistance;with more than 50%sp^(3) content,while it also had larger water contact angle and higher corrosion resistance than DLC film.The filtered arcing deposition technology was able to make the film to be more consistent and stable than normal arcing technology in terms of the preparation of Ta-C.The coating displayed corrosion density of 1.26×10^(−7) A·cm^(−2) and ICR of less than 5 mΩ·cm^(2),far beyond technical target of 2025 DOE(US Department of Energy).This indicated that the mass-production scale coating technology for PEMFC bipolar plates is highly possible.
基金supported by the National Natural Science Foundation of China(No.12075105)the Major Science and Technology Projects of Gansu Province(No.22ZD6GB020)+1 种基金the NSFC-Nuclear Technology Innovation Joint Fund(No.U2167203)the Fundamental Research Funds for the Central Universities(lzujbky-2023-stlt01,lzujbky-2024-jdzx10)。
文摘Burnup measurement is crucial for the management and disposal of spent fuel.The conventional approach indirectly estimates burnup by examining the fission product or actinide content.Compared to the first two methods,the active neutron method exhibits a lower dependence on the irradiation history and initial enrichment degree of the spent fuel.In addition,it can be used to directly determine the content of fissile nuclides in spent fuel.This study proposed the design of a burnup measurement equipment specifically crafted for plate segments by utilizing a compact D-D neutron generator.The equipment initiates the fission of fissile nuclides within the spent fuel plate segment through thermal neutrons provided by the moderators.Subsequently,the burnup is determined by analyzing the transmitted thermal neutrons and counting the fission fast neutrons.The Monte Carlo program Geant4 was used to simulate the relationship between spent fuel plate segment assembly burnup and the detector count of 10 MW material test reactor designed by the International Atomic Energy Agency.Consequently,the feasibility of the method and rationality of the detector design were verified.
基金supported by Natural Science Foundation of Fujian Province(2022I0019)Scientific Research Foundation for Jimei University(ZQ2024041,ZQ2024042).
文摘The penetration of ogival-nosed projectiles into ship plates represents a complex impact dynamics issue essential for analyzing structural failuremechanisms.Although stiffenedplates are vital in ship construction,fewstudies have addressed the issue of model equivalence under penetration loading.This study employs numerical simulation to validate an experiment with an ogival-nosed projectile penetrating a Q345 steel plate.Four equivalent stiffened plate methods are proposed based on the area,flexural modulus,moment of inertia,and thickness.The results indicate that thickness equivalence(DM4)is unsuitable for penetration-loaded stiffened plates,except under low-speed,nonpenetrating through impacts,and yields less accuracy than DM1/DM3.DM1,DM2,and DM3 each perform optimally with specific velocity ranges:DM1 at very low(critical)and high velocities,DM3 at low velocities,and DM2 at high speeds.Furthermore,in penetration scenarios,T-shaped stiffeners can be replacedwith rectangular ones,as both exhibit similar failure behaviors and deflection trends,simplifying the design while preserving key structural characteristics.These findings provide valuable insights into the design of protective ship structures.
基金supported by the National Natural Science Foundation of China under Grant Nos.12102310 and U21A20113the Guangdong Basic and Applied Basic Research Foundation under Grant No.2020A1515110818+2 种基金the Inovation Team Project for Colleges and Universities of Guangdong Province under Grant No.2023KCXTD030the Key Project of Biomedicine and Health in Colleges and Universities of Guangdong Province under Grant No.2021ZDZX2055the Medical Science and Technology Research Fund of Guangdong Province under Grant No.A2022004.
文摘Proton exchange membrane fuel cells(PEMFCs)have gained increasing interests as promising power sources due to their ability to convert hydrogen and oxygen directly into electricity with high efficiency and zero greenhouse gas emissions.Bipolar plates(BPs)are considered as a critical component of PEMFCs,serving to collect current,separate gases,distribute the flow field,and conduct heat.This paper reviews the technical status and advancements in BP materials,with special focus on strategies for enhancing interfacial contact resistance(ICR)and corrosion resistance through conductive polymer(CP)coatings.First,commonly used BP materials in PEMFCs are summarized.Then,the advantages and limitations of various coatings for metallic BPs are discussed.Finally,recent progress in CP coatings for metallic BPs,aimed at achieving high corrosion resistance and low ICR,is comprehensively reviewed.
基金supported by the National Natural Science Foundation of China(Grant Nos.12302006,12132002,and 62188101).
文摘A lightweight composite resonator,consisting of a soft material acoustic black hole(SABH)and multiple vibration absorbers,is embedded in a plate to achieve localization and absorption of low-frequency vibration energy.The combination of local and global admissible functions for displacement enhances the accuracy of the Ritz method in predicting vibration localization characteristics within the SABH domain.Utilizing soft materials for the SABH can reduce the mass and frequency of the composite resonator.Due to the lack of orthogonality between global vibration modes and localized modes,the low-frequency localized modes induced by the SABH are used to shape the initial global modes,thereby concentrating the global vibration of the plate in the SABH region.Consequently,the absorbers of the composite resonator only need to be a small fraction of the mass of the local SABH to achieve substantial vibration control of the host plate.This vibration localization strategy can significantly reduce the vibration amplitude of the host plate and enhance the effectiveness of lightweight absorbers in vibration reduction.
基金financially supported by the National Natural Science Foundation of China(Grant No.52001040),the Natural Science Foundation Project of Chongqing,Chongqing Science and Technology Commission(Grant No.cstc2021jcyj-msxmX0944)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K202300710).
文摘The influences of different factors,including whether the transverse frames are actually built,longitudinal and transverse welding residual stresses,and unloaded edge boundaries,on the ultimate strength and failure mode of a real hull bottom full-scale stiffened plate under axial compression and lateral pressure are investigated via numerical analysis.Result shows that the failure mode of the stiffened plate under axial compression is the tripping of the stiffeners.Whether transverse frames are built has little effect on the ultimate strength of the stiffened plate under axial compression,which can be replaced by the degree of freedom constraint.However,when lateral pressure is present,the transverse frame cannot be simply replaced by a free-degree constraint.The longitudinal residual stress has a greater effect on the ultimate strength,whereas the effect of the transverse residual stress is smaller.Stronger unloaded edge boundary conditions can slightly enhance the stiffness and ultimate strength of the stiffened plate.Under combined axial compression and lateral pressure,the failure mode of stiffened plates changes from the tripping of stiffeners to beam-column failure,as the lateral pressure increases.The ability of stiffened plates in which transverse frames are actually built out to resist beam-column shape deformation becomes weaker with lower ultimate strength.Stronger unloaded edge boundary conditions can improve the ability of stiffened plates to resist beam-column deformation and increase the ultimate strength.
基金supported by a National Research Foundation of Korea(NRF)grant funded by Korean government(Nos.NRF-2022R1A4A1028747 and RS-2024-00344151).
文摘Achieving exact printing fidelity in polymer-based bone regeneration scaffolds through additive manufacturing,particularly those of dispensing-type,remains a significant challenge.During fabrication,scaffolds often deviate from the intended design geometry,which can negatively affect their performance.Additionally,achieving mechanical properties similar to natural bone in scaffolds remains challenging.Therefore,this study introduces the Hybrid Modified Cubic-Honeycomb Plate(hybrid MCHP)structure to improve printing fidelity and mechanical properties over previous bone regeneration scaffolds through innovative geometry design.This hybrid MCHP scaffold was inspired by cubic honeycomb and plate-lattice structures due to their excellent mechanical performance and well-optimized geometry,which ensure optimal printability.The effective elastic stiffness of the proposed structure and control group was predicted using a numerical Asymptotic Expansion Homogenization(AEH)model.Bone regeneration scaffolds were fabricated using Polycaprolactone(PCL)and a 3D printer with a Precision Extrusion Deposition(PED)system.Printing fidelity in manufactured scaffolds was then evaluated,resulting in a printing fidelity of 97.93±1.1%for the hybrid MCHP-structure scaffold(compared to 82.31±3.6%and 92.00±2.5%in the case of Kagome-structure and modified honeycomb(MHC)-structure scaffolds,which are the control groups).Mechanical testing of the hybrid MCHP-structure scaffold using a Universal Testing Machine(UTM)depicted similarity with 91.1%of the numerical estimated effective elastic stiffness(compared to 82.8%and 79.0%in the case of Kagome-structure and MHC-structure scaffolds,which serve as the control groups).The biological potential of the scaffolds was evaluated through in vitro studies using MC3T3-E1 pre-osteoblasts.The CCK-8 assay showed significantly enhanced cell viability and proliferation on the hybrid MCHP scaffold at all time points(days 1,7,and 14),consistently outperforming the Kagome and MHC scaffolds.Additionally,immunofluorescence staining analysis revealed abundant focal adhesions and uniform nuclear distribution,highlighting the superior cytocompatibility and effective support for cellular activity of the hybrid MCHP scaffold.
基金supported by the Research Start-Up Fund for Introducing Talents from Anhui Polytechnic University(S022023032)the Program for Synergy Innovation in the Anhui Higher Education Institutions of China(GXXT-2021-044 and GXXT-2022-082)+2 种基金the Scientific Research Foundation of Education Department of Anhui Province,China(2022AH040361)the National Natural Science Foundation of China(12172114)the Natural Science Funds for Distinguished Young Scholar of Anhui Province of China(2208085J25).
文摘This paper studies the vibration responses of porous functionally graded(FG)thin plates with four various types of porous distribution based on the physical neutral plane by employing the peridynamic differential operator(PDDO).It is assumed that density and elastic modulus continuously vary along the transverse direction following the power law distribution for porous FG plates.The governing differential equation of free vibration for a porous rectangular FG plate and its associated boundary conditions are expressed by a Lévy-type solution based on nonlinear von Karman plate theory.Dimensionless frequencies and mode shapes are obtained after solving the characteristic equations established by PDDO.The results of the current method are validated through comparison with existing literature.The effects of geometric parameters,material properties,elastic foundation,porosity distribution,and boundary conditions on the frequency are investigated and discussed in detail.The highest fundamental dimensionless frequency occurs under SCSC boundary conditions,while the lowest is under SFSF boundary conditions.The porous FG plate with the fourth pore type,featuring high density of porosity at the top and low at the bottom,exhibits the highest fundamental frequency under SSSS,SFSF,and SCSC boundary conditions.The dimensionless frequency increases with an increase in the elastic foundation stiffness coefficient.