The mode sorter is the crucial component of the communication systems based on orbital angular momentum(OAM).However,schemes proposed so far can only effectively sort integer OAM(IOAM)modes.Here,we demonstrate the eff...The mode sorter is the crucial component of the communication systems based on orbital angular momentum(OAM).However,schemes proposed so far can only effectively sort integer OAM(IOAM)modes.Here,we demonstrate the effective sorting of fractional OAM(FOAM)modes by utilizing the coordinate transformation method,which can convert FOAM modes to IOAM modes.The transformed IOAM modes are subsequently sorted using a mode conversion method called topological charge matching.The validation of our scheme is verified by implementing two FOAM sorting processes and corresponding mode purity analyses,both theoretically and experimentally.This new sorting method exhibits great potential for implementing a highly confidential and high-capacity FOAM-based communication and data storage system,which may inspire further applications in both classical and quantum regimes.展开更多
A pipe model with a mass ratio(mass/displaced mass) of 4.30 was tested to investigate the vortex-induced vibrations of submarine pipeline spans near the seabed.The pipe model was designed as a bending stiffness-domi...A pipe model with a mass ratio(mass/displaced mass) of 4.30 was tested to investigate the vortex-induced vibrations of submarine pipeline spans near the seabed.The pipe model was designed as a bending stiffness-dominated beam.The gap ratios(gap to diameter ratio) at the pipe ends were 4.0,6.0,and 8.0.The flow velocity was systematically varied in the 0-16.71 nondimensional velocity range based on the first natural frequency.The mode transition between the first and the second mode as the flow velocity increases was investigated.At various transition flow velocities,the research indicates that the peak frequencies with respect to displacement are not identical along the pipe,nor the frequencies associated with the peak of the amplitude spectra for the first four modes as well.The mode transition is associated with a continuous change in the amplitude,but there's a jump in frequency,and a gradual process along the pipe length.展开更多
The underlying effect of vortex interaction characterized by the merging and non-merging on mixing enhancement is of fundamental significance to understand the flow dynamics of strut injectors in scramjets.Starting fr...The underlying effect of vortex interaction characterized by the merging and non-merging on mixing enhancement is of fundamental significance to understand the flow dynamics of strut injectors in scramjets.Starting from a simplified configuration of a vortex generator,this study focuses on the influence of geometric parameters on vortex structures and fluid mixing through compressible Navier-Stokes(NS)simulations.By adjusting the induction of outer vortices,the inner co-rotating vortex pair exhibits two modes of interaction(merging/separation regime)reflected by closer/farther vortex centers.Defined by the zero variation rate of the inner vortex spacing,the critical state of equilibrium is determined.The critical condition is well predicted by a theoretical model based on the Biot-Savart law.Through the introduction of mixedness and mixing time,the intrinsic impact of interaction modes on fluid mixing is revealed.Compared with the vortex dynamics in the merging regime,the one in the separation regime is more effective for passive scalar mixing augmentation.With efficient material stretching characterized by the higher interface stretching factor and averaging finite-time Lyapunov exponent(FTLE),the mixing time is shortened by as much as 2.5 times in the separation regime.The implication of the present two interaction regimes in mixing enhancement physically reflected by the averaging FTLE has the potential to improve the combustion performance and shorten the combustor chamber.展开更多
This paper studies the application of mathematical models to analyze the vortex-induced vibrations of the tendons of a given TLP along the Indian coastline, by using an analytical approach, using MATLAB. The tendon is...This paper studies the application of mathematical models to analyze the vortex-induced vibrations of the tendons of a given TLP along the Indian coastline, by using an analytical approach, using MATLAB. The tendon is subjected to a steady current load, which causes vortex-shedding downstream, leading to cross-flow vibrations. The magnitude of the excitation(lift and drag coefficients) depends on the vortex-shedding frequency. The resulting vibration is studied for possible resonant behavior. The excitation force is quantified empirically, the added mass by potential flow hydrodynamics, and the vibration by normal mode summation method. Non-linear viscous damping of the water is considered. The non-linear oscillations are studied by the phase-plane method, investigating the limit-cycle oscillations. The stable/unstable regions of the dynamic behavior are demarcated. The modal contribution to the total deflection is studied to establish the possibility of resonance of one of the wet modes with the vortex-shedding frequency.展开更多
A numerical study of vortex-induced rotations(VIRs) of an equivalent triangular cylinder, which is free to rotate in the azimuthal direction in a uniform flow, is presented. Based on an immersed boundary method, the n...A numerical study of vortex-induced rotations(VIRs) of an equivalent triangular cylinder, which is free to rotate in the azimuthal direction in a uniform flow, is presented. Based on an immersed boundary method, the numerical model is established, and is verified through the benchmark problem of flow past a freely rotating rectangular body.The computation is performed for a fixed reduced mass of m~*=2.0 and the structural stiffness and damping ratio are set to zero. The effects of Reynolds number(Re=25-180) on the characteristics of VIR are studied. It is found that the dynamic response of the triangular cylinder exhibits four distinct modes with increasing Re: a rest position,periodic rotational oscillation, random rotation and autorotation. For the rotational oscillation mode, the cylinder undergoes a periodic vibration around an equilibrium position with one side facing the incoming flow. Since the rotation effect, the outset of vortex shedding from cylinder shifts to a much lower Reynolds number. Further increase in Re leads to 2 P and P+S vortex shedding modes besides the typical 2 S pattern. Our simulation results also elucidate that the free rotation significantly changes the drag and lift forces. Inspired by these facts, the effect of free rotation on flow-induced vibration of a triangular cylinder in the in-line and transverse directions is investigated. The results show that when the translational vibration is coupled with rotation, the triangular cylinder presents a galloping response instead of vortex-induced vibration(VIV).展开更多
Supersonic flows past two-dimensional cavities with/without control are investigated by the direct numerical simulation (DNS). For an uncontrolled cavity, as the thickness of the boundary layer declines, transition ...Supersonic flows past two-dimensional cavities with/without control are investigated by the direct numerical simulation (DNS). For an uncontrolled cavity, as the thickness of the boundary layer declines, transition of the dominant mode from the steady mode to the Rossiter Ⅱ mode and then to the Rossiter III mode is observed due to the change of vortex-corner interactions. Meanwhile, a low frequency mode appears. However, the wake mode observed in a subsonic cavity flow is absent in the current simulation. The oscillation frequencies obtained from a global dynamic mode decomposition (DMD) approach are consistent with the local power spectral density (PSD) analysis. The dominant mode transition is clearly shown by the dynamic modes obtained from the DMD. A passive control technique of substituting the cavity trailing edge with a quarter-circle is studied. As the effective cavity length increases, the dominant mode transition from the Rossiter Ⅱ mode to the Rossiter Ⅲ mode occurs. With the control, the pressure oscillations are reduced significantly. The interaction of the shear layer and the recirculation zone is greatly weakened, combined with weaker shear layer instability, responsible for the suppression of pressure oscillations. Moreover, active control using steady subsonic mass injection upstream of a cavity leading edge can stabilize the flow.展开更多
Abstract Experiments were conducted in a water tunnel by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The Reynolds number Reo is 2 460 on the base of momentum thickness. According to the physic...Abstract Experiments were conducted in a water tunnel by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The Reynolds number Reo is 2 460 on the base of momentum thickness. According to the physical mechanism of the stretch and compression of multi-scale vortex structures in the wall-bounded turbulence, the topological characteristics of turbulence statistics in logarithmic layer were illustrated by local-averaged velocity structure function. During coherent structures bursting, results reveal that the topological structures of velocity gradients, velocity strain rates and vorticities behave as antisymmetric quadrupole modes. A three-layer antisymmetric quadrupole vortex packet confirms that there is a tight relationship between the outer layer and the near-wall layer.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12192252 and 12374314)the National Key Research and Development Program of China(Grant No.2023YFA1407200).
文摘The mode sorter is the crucial component of the communication systems based on orbital angular momentum(OAM).However,schemes proposed so far can only effectively sort integer OAM(IOAM)modes.Here,we demonstrate the effective sorting of fractional OAM(FOAM)modes by utilizing the coordinate transformation method,which can convert FOAM modes to IOAM modes.The transformed IOAM modes are subsequently sorted using a mode conversion method called topological charge matching.The validation of our scheme is verified by implementing two FOAM sorting processes and corresponding mode purity analyses,both theoretically and experimentally.This new sorting method exhibits great potential for implementing a highly confidential and high-capacity FOAM-based communication and data storage system,which may inspire further applications in both classical and quantum regimes.
基金Supported by the National Natural Science Foundation of China(No.41176072) the Scientific Research Fund of Hunan Provincial Education Department(No.12C0030)+1 种基金 the Program for Hu’nan Province Key Laboratory of Water,Sediment Sciences and Flood Hazard Prevention(No.2012SS07) the National Natural Science Foundation for Youth of China(No.51109018)
文摘A pipe model with a mass ratio(mass/displaced mass) of 4.30 was tested to investigate the vortex-induced vibrations of submarine pipeline spans near the seabed.The pipe model was designed as a bending stiffness-dominated beam.The gap ratios(gap to diameter ratio) at the pipe ends were 4.0,6.0,and 8.0.The flow velocity was systematically varied in the 0-16.71 nondimensional velocity range based on the first natural frequency.The mode transition between the first and the second mode as the flow velocity increases was investigated.At various transition flow velocities,the research indicates that the peak frequencies with respect to displacement are not identical along the pipe,nor the frequencies associated with the peak of the amplitude spectra for the first four modes as well.The mode transition is associated with a continuous change in the amplitude,but there's a jump in frequency,and a gradual process along the pipe length.
基金Project supported by the National Natural Science Foundation of China(Nos.91741113,91841303,and 91941301)。
文摘The underlying effect of vortex interaction characterized by the merging and non-merging on mixing enhancement is of fundamental significance to understand the flow dynamics of strut injectors in scramjets.Starting from a simplified configuration of a vortex generator,this study focuses on the influence of geometric parameters on vortex structures and fluid mixing through compressible Navier-Stokes(NS)simulations.By adjusting the induction of outer vortices,the inner co-rotating vortex pair exhibits two modes of interaction(merging/separation regime)reflected by closer/farther vortex centers.Defined by the zero variation rate of the inner vortex spacing,the critical state of equilibrium is determined.The critical condition is well predicted by a theoretical model based on the Biot-Savart law.Through the introduction of mixedness and mixing time,the intrinsic impact of interaction modes on fluid mixing is revealed.Compared with the vortex dynamics in the merging regime,the one in the separation regime is more effective for passive scalar mixing augmentation.With efficient material stretching characterized by the higher interface stretching factor and averaging finite-time Lyapunov exponent(FTLE),the mixing time is shortened by as much as 2.5 times in the separation regime.The implication of the present two interaction regimes in mixing enhancement physically reflected by the averaging FTLE has the potential to improve the combustion performance and shorten the combustor chamber.
文摘This paper studies the application of mathematical models to analyze the vortex-induced vibrations of the tendons of a given TLP along the Indian coastline, by using an analytical approach, using MATLAB. The tendon is subjected to a steady current load, which causes vortex-shedding downstream, leading to cross-flow vibrations. The magnitude of the excitation(lift and drag coefficients) depends on the vortex-shedding frequency. The resulting vibration is studied for possible resonant behavior. The excitation force is quantified empirically, the added mass by potential flow hydrodynamics, and the vibration by normal mode summation method. Non-linear viscous damping of the water is considered. The non-linear oscillations are studied by the phase-plane method, investigating the limit-cycle oscillations. The stable/unstable regions of the dynamic behavior are demarcated. The modal contribution to the total deflection is studied to establish the possibility of resonance of one of the wet modes with the vortex-shedding frequency.
基金financially supported by the Fundamental Research Funds for the Central Universities(Grant Nos.2018B56414 and2019B12014)the National Natural Science Foundation of China(Grant No.51609077)
文摘A numerical study of vortex-induced rotations(VIRs) of an equivalent triangular cylinder, which is free to rotate in the azimuthal direction in a uniform flow, is presented. Based on an immersed boundary method, the numerical model is established, and is verified through the benchmark problem of flow past a freely rotating rectangular body.The computation is performed for a fixed reduced mass of m~*=2.0 and the structural stiffness and damping ratio are set to zero. The effects of Reynolds number(Re=25-180) on the characteristics of VIR are studied. It is found that the dynamic response of the triangular cylinder exhibits four distinct modes with increasing Re: a rest position,periodic rotational oscillation, random rotation and autorotation. For the rotational oscillation mode, the cylinder undergoes a periodic vibration around an equilibrium position with one side facing the incoming flow. Since the rotation effect, the outset of vortex shedding from cylinder shifts to a much lower Reynolds number. Further increase in Re leads to 2 P and P+S vortex shedding modes besides the typical 2 S pattern. Our simulation results also elucidate that the free rotation significantly changes the drag and lift forces. Inspired by these facts, the effect of free rotation on flow-induced vibration of a triangular cylinder in the in-line and transverse directions is investigated. The results show that when the translational vibration is coupled with rotation, the triangular cylinder presents a galloping response instead of vortex-induced vibration(VIV).
基金supported by the National Natural Science Foundation of China(Nos.11232011 and11402262)the 111 Project of China(No.B07033)+1 种基金the China Postdoctoral Science Foundation(No.2014M561833)the Fundamental Research Funds for the Central Universities
文摘Supersonic flows past two-dimensional cavities with/without control are investigated by the direct numerical simulation (DNS). For an uncontrolled cavity, as the thickness of the boundary layer declines, transition of the dominant mode from the steady mode to the Rossiter Ⅱ mode and then to the Rossiter III mode is observed due to the change of vortex-corner interactions. Meanwhile, a low frequency mode appears. However, the wake mode observed in a subsonic cavity flow is absent in the current simulation. The oscillation frequencies obtained from a global dynamic mode decomposition (DMD) approach are consistent with the local power spectral density (PSD) analysis. The dominant mode transition is clearly shown by the dynamic modes obtained from the DMD. A passive control technique of substituting the cavity trailing edge with a quarter-circle is studied. As the effective cavity length increases, the dominant mode transition from the Rossiter Ⅱ mode to the Rossiter Ⅲ mode occurs. With the control, the pressure oscillations are reduced significantly. The interaction of the shear layer and the recirculation zone is greatly weakened, combined with weaker shear layer instability, responsible for the suppression of pressure oscillations. Moreover, active control using steady subsonic mass injection upstream of a cavity leading edge can stabilize the flow.
基金supported by the National Natural Science Fundation of China (11272233)National Basic Research Program (973 Program) (2012CB720101)2013 Opening Fund of LNM,Institute of Mechanics,Chinese Academy of Sciences
文摘Abstract Experiments were conducted in a water tunnel by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The Reynolds number Reo is 2 460 on the base of momentum thickness. According to the physical mechanism of the stretch and compression of multi-scale vortex structures in the wall-bounded turbulence, the topological characteristics of turbulence statistics in logarithmic layer were illustrated by local-averaged velocity structure function. During coherent structures bursting, results reveal that the topological structures of velocity gradients, velocity strain rates and vorticities behave as antisymmetric quadrupole modes. A three-layer antisymmetric quadrupole vortex packet confirms that there is a tight relationship between the outer layer and the near-wall layer.