The precessing vortex core (PVC) in a cyclone separator plays an important role in the separation performance and in further understanding of the general law of periodic unsteady flow therein. In this paper, the unste...The precessing vortex core (PVC) in a cyclone separator plays an important role in the separation performance and in further understanding of the general law of periodic unsteady flow therein. In this paper, the unsteady flow field is investigated with particle image velocimetry (PIV), and the instantaneous velocity, vorticity, tangential velocity, and radial velocity are acquired by analyzing the images of instantaneous flow. It is for the first time reported that there is a centrifugal flow region close to the dust discharge zone and its maximum value is higher than the mean radial velocity. This discovery is very important for understanding the principle of separation of particles in the area of dust discharge. Determination of the frequency and amplitude of PVC was conducted in the region where the phenomenon of PVC is remarkable. Results agree well with those obtained by hot wire anemometry. The observations of the center of vortex core and the bimodal distribution of the amplitude of the PVC indicate the vortex core precesses around the geometric axis of the cyclone in its own way.展开更多
Vortices motion in the anisotropic turbulent flow of cyclones makes a vital impact on flow stability and collection performance.Nevertheless,there remains a lack of clarity in the overall feature of vortices motion.In...Vortices motion in the anisotropic turbulent flow of cyclones makes a vital impact on flow stability and collection performance.Nevertheless,there remains a lack of clarity in the overall feature of vortices motion.In this work,a numerical analysis was conducted to clarify the complex motion of the vortex core in a cyclone separator.The validity of the numerical model was demonstrated by comparing the computational results with experimental data in the literature.As revealed by the results,the vortex core not only has a precession motion about the geometrical center axis but also does a nutation motion in the axial direction.The frequencies of the precession motions show two main peaks.And the magnitudes of the precession and nutation motions have non-uniform distributions in the cyclone.Moreover,the precession-nutation motions of the vortex cores exhibit a similar fluctuant pattern to the dust ring on the separator wall.The inlet gas velocity and the inlet solid loading show vital effects on the magnitudes and frequencies of precession and nutation motion.展开更多
We perform micromagnetic simulations on the switching of magnetic vortex core by using spin-polarized currents through a three-nanocontact geometry. Our simulation results show that the current combination with an app...We perform micromagnetic simulations on the switching of magnetic vortex core by using spin-polarized currents through a three-nanocontact geometry. Our simulation results show that the current combination with an appropriate current flow direction destroys the symmetry of the total effective energy of the system so that the vortex core can be easier to excite,resulting in less critical current density and a faster switching process. Besides its fundamental significance, our findings provide an additional route to incorporating magnetic vortex phenomena into data storage devices.展开更多
To delay the vortex breakdown position of the slender delta wing,this study innovativelyproposes the application of control near the Leading-Edge Vortex(LEV)core sweeping path,whichis called Coupled Core Rotation Dual...To delay the vortex breakdown position of the slender delta wing,this study innovativelyproposes the application of control near the Leading-Edge Vortex(LEV)core sweeping path,whichis called Coupled Core Rotation Dual Synthetic Jets(CCR-DSJ)control.The results show that thevortex breakdown points at each angle of attack are moved backward after control,and the max-imum delayed displacement is 32.4%of the root chord at 30°.Besides,there is a linear relationshipbetween the breakdown position and the angle of attack after control,indicating that CCR-DSJcontrol has a significant effect on the pressure gradient of the vortex axis.Furthermore,the lift coef-ficient C_(L)is enhanced after control,with a maximum CLincrement of 0.078 at 27°,and an effectiveincrement interval of[25°,32°].This interval is different from most previous studies,which isdirectly related to the position of the actuators.According to the lift change mechanism,the anglesof attack are divided into three stages:Stage 1(a=15°–25°),Stage 2(a=25°–32°),and Stage 3(a=32°–40°).In conclusion,CCR-DSJ control can significantly change the pressure distribution,thereby offering promising prospects for the flight stage of the slender delta wing.展开更多
The turbulent flow in the draft tube of a Francis turbine is very complicated while working under off-design conditions. Although the off-design conditions were widely studied, the vortex core line in the draft tube o...The turbulent flow in the draft tube of a Francis turbine is very complicated while working under off-design conditions. Although the off-design conditions were widely studied, the vortex core line in the draft tube of a Francis turbine with splitter blades is not well understood, especially the vortex rope property. This letter presents a prediction of the behavior of the vortex rope in the draft tube of the Francis-99 turbine obtained by the computational fluid dynamics (CFD), where the Liutex/Rortex method, as the most recent vortex definition, is applied to analyze the periodical precession of the vortex rope in the draft tube cone. The advantage of this Liutex/Rortex method is shown by its enhanced ability to represent the vortex rope structurewith the vortex-core lines. Furthermore, since it seems to be very hard to define a sharp boundary surface for the whole vortex structure, it is advantageousfocusing only on the vortex core line,by which different vortex structures can be clearly differentiated. The evolution of the vortex core and the process of the vortex breakdown in the draft tube are revealed, which might help to comprehend the development of the turbulent flow in the draft tube.展开更多
A dimple appears on a free surface while rotating a cylinder tank filled with liquid. The dimple starts to concentrically deeper to a drain port at the bottom center of the tank. Over time, the dimple penetrates the d...A dimple appears on a free surface while rotating a cylinder tank filled with liquid. The dimple starts to concentrically deeper to a drain port at the bottom center of the tank. Over time, the dimple penetrates the drain port, a free surface forms a long and slender string shape in the tank, and a so-called vortexing (air core) phenomenon occurs. The generation of a vortex core depends on the size of the tank and drain port, and on the properties of the liquid in the tank. In this study, the liquid level and the time at which the vortex core is initially generated are numerically investigated using different values of tank diameter, drain port diameter, and ini- tial tank rotational speeds. Instead of a full three-dimensional analysis, a two-dimensional axisymmetric simulation is conducted. The momentum conservation equation in the circumferential direction is additionally solved in the two-dimensional mesh system. Several non-dimensional variables are created: the ratio of the air core generation distance and tank diameter, the diameter ratio of the tank and drain port, the rotational Reynolds number, the rotational Froude number, and the rotational Weber number. Finally, the non-dimensional air core generation distance is correlated with the other non-dimensional parameters.展开更多
We give a brief review of the asymptotic theory of slender vortex filaments with emphases on (i) the choices of scalings and small parameters characterizing the physical problem,(ii) the key steps in the formulation o...We give a brief review of the asymptotic theory of slender vortex filaments with emphases on (i) the choices of scalings and small parameters characterizing the physical problem,(ii) the key steps in the formulation of the theory and (iii) the assumptions and/or restrictions on the theory of Callegari and Ting (1978).We present highlights of an extension of the 1978 asymptotic theory:the analyses for core structures with axial variation.Making use of the physical insights gained from the analyses,we present a new derivation of the evolution equations for the core structure.The new one is simpler and straightforward and shows the physics clearly.展开更多
Nonlinear vortex gyrotropic motion in a three-nanocontacts system is investigated by micromagnetic slmulations and analytical calculations. Three out-of-plane spin-polarized currents are injected into a nanodisk throu...Nonlinear vortex gyrotropic motion in a three-nanocontacts system is investigated by micromagnetic slmulations and analytical calculations. Three out-of-plane spin-polarized currents are injected into a nanodisk through a centered nanocontact and two off-centered nanocontacts, respectively. For current combination (ipl, ip0, ip2) = (-1,1, -1), the trajectory of the vortex core is a peanut-like orbit, but it is an elliptical orbit for (ip1, ip0, ip2) = (1, 1, -1). Moreover, the gyrotropic frequency displays peaks for both current combinations. Analytical calculations based on the Thiele equation show that the changes of frequency can be ascribed mainly to the forces generated by the Oersted field accompanying the currents. We also demonstrate a dependence of eigenfrequency shifts on the direction and distance of the applied currents.展开更多
Three-Dimensional(3D)swirling flow structures,generated by a counter-rotating dualstage swirler in a confined chamber with a confinement ratio of 1.53,were experimentally investigated at Re=2.3×10^(5)using Tomogr...Three-Dimensional(3D)swirling flow structures,generated by a counter-rotating dualstage swirler in a confined chamber with a confinement ratio of 1.53,were experimentally investigated at Re=2.3×10^(5)using Tomographic Particle Image Velocimetry(Tomo-PIV)and planar Particle Image Velocimetry(PIV).Based on the analysis of the 3D time-averaged swirling flow structures and 3D Proper Orthogonal Decomposition(POD)of the Tomo-PIV data,typical coherent flow structures,including the Corner Recirculation Zone(CRZ),Central Recirculation Zone(CTRZ),and Lip Recirculation Zone(LRZ),were extracted.The counter-rotating dual-stage swirler with a Venturi flare generates the independence process of vortex breakdown from the main stage and pilot stage,leading to the formation of an LRZ and a smaller CTRZ near the nozzle outlet.The confinement squeezes the CRZ to the corner and causes a reverse rotation flow to limit the shape of the CTRZ.A large-scale flow structure caused by the main stage features an explosive breakup,flapping,and Precessing Vortex Core(PVC).The explosive breakup mode dominates the swirling flow structures owing to the expansion and construction of the main jet,whereas the flapping mode is related to the wake perturbation.Confinement limits the expansion of PVC and causes it to contract after the impacting area.展开更多
Experiments were conducted to study the generation of air core and its effect on the outflow shape and discharge in a cylindrical water tank with a bottom well-designed outlet. Depending on the stages of the air core ...Experiments were conducted to study the generation of air core and its effect on the outflow shape and discharge in a cylindrical water tank with a bottom well-designed outlet. Depending on the stages of the air core in the tank, the outflow shape can vary from a smooth water jet to a smooth spindle shape with air-core, and to water sprays. The diameter of the nozzle size also has influence on the outflow pattern. The existence of the penetrated air core can dramatically reduce the outflow discharge, with the discharge coefficient decreasing with the nozzle diameter.展开更多
基金Supported by the National Natural Science Foundation of China (No.20076028)
文摘The precessing vortex core (PVC) in a cyclone separator plays an important role in the separation performance and in further understanding of the general law of periodic unsteady flow therein. In this paper, the unsteady flow field is investigated with particle image velocimetry (PIV), and the instantaneous velocity, vorticity, tangential velocity, and radial velocity are acquired by analyzing the images of instantaneous flow. It is for the first time reported that there is a centrifugal flow region close to the dust discharge zone and its maximum value is higher than the mean radial velocity. This discovery is very important for understanding the principle of separation of particles in the area of dust discharge. Determination of the frequency and amplitude of PVC was conducted in the region where the phenomenon of PVC is remarkable. Results agree well with those obtained by hot wire anemometry. The observations of the center of vortex core and the bimodal distribution of the amplitude of the PVC indicate the vortex core precesses around the geometric axis of the cyclone in its own way.
基金Authors thank for the joint funding of a Key Research and Development Plan of Shandong Province(Public Science and Technology)(2019GSF109038)the Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province(2019MFRSE-A01)the National Natural Science Foundation of China(51809236).
文摘Vortices motion in the anisotropic turbulent flow of cyclones makes a vital impact on flow stability and collection performance.Nevertheless,there remains a lack of clarity in the overall feature of vortices motion.In this work,a numerical analysis was conducted to clarify the complex motion of the vortex core in a cyclone separator.The validity of the numerical model was demonstrated by comparing the computational results with experimental data in the literature.As revealed by the results,the vortex core not only has a precession motion about the geometrical center axis but also does a nutation motion in the axial direction.The frequencies of the precession motions show two main peaks.And the magnitudes of the precession and nutation motions have non-uniform distributions in the cyclone.Moreover,the precession-nutation motions of the vortex cores exhibit a similar fluctuant pattern to the dust ring on the separator wall.The inlet gas velocity and the inlet solid loading show vital effects on the magnitudes and frequencies of precession and nutation motion.
基金supported by the China Postdoctoral Science Foundation(Grant No.2013M541286)the Science and Technology Planning Project of Jilin Province,China(Grant Nos.20140520109JH and 20150414003GH)the “Twelfth Five year” Scientific and Technological Research Project of Department of Education of Jilin Province,China
文摘We perform micromagnetic simulations on the switching of magnetic vortex core by using spin-polarized currents through a three-nanocontact geometry. Our simulation results show that the current combination with an appropriate current flow direction destroys the symmetry of the total effective energy of the system so that the vortex core can be easier to excite,resulting in less critical current density and a faster switching process. Besides its fundamental significance, our findings provide an additional route to incorporating magnetic vortex phenomena into data storage devices.
基金supported by the National Natural Science Foundation of China(Nos.92271110,12072352)the Major National Science and Technology Project,China(No.J2019-Ⅲ-0010-0054)。
文摘To delay the vortex breakdown position of the slender delta wing,this study innovativelyproposes the application of control near the Leading-Edge Vortex(LEV)core sweeping path,whichis called Coupled Core Rotation Dual Synthetic Jets(CCR-DSJ)control.The results show that thevortex breakdown points at each angle of attack are moved backward after control,and the max-imum delayed displacement is 32.4%of the root chord at 30°.Besides,there is a linear relationshipbetween the breakdown position and the angle of attack after control,indicating that CCR-DSJcontrol has a significant effect on the pressure gradient of the vortex axis.Furthermore,the lift coef-ficient C_(L)is enhanced after control,with a maximum CLincrement of 0.078 at 27°,and an effectiveincrement interval of[25°,32°].This interval is different from most previous studies,which isdirectly related to the position of the actuators.According to the lift change mechanism,the anglesof attack are divided into three stages:Stage 1(a=15°–25°),Stage 2(a=25°–32°),and Stage 3(a=32°–40°).In conclusion,CCR-DSJ control can significantly change the pressure distribution,thereby offering promising prospects for the flight stage of the slender delta wing.
文摘The turbulent flow in the draft tube of a Francis turbine is very complicated while working under off-design conditions. Although the off-design conditions were widely studied, the vortex core line in the draft tube of a Francis turbine with splitter blades is not well understood, especially the vortex rope property. This letter presents a prediction of the behavior of the vortex rope in the draft tube of the Francis-99 turbine obtained by the computational fluid dynamics (CFD), where the Liutex/Rortex method, as the most recent vortex definition, is applied to analyze the periodical precession of the vortex rope in the draft tube cone. The advantage of this Liutex/Rortex method is shown by its enhanced ability to represent the vortex rope structurewith the vortex-core lines. Furthermore, since it seems to be very hard to define a sharp boundary surface for the whole vortex structure, it is advantageousfocusing only on the vortex core line,by which different vortex structures can be clearly differentiated. The evolution of the vortex core and the process of the vortex breakdown in the draft tube are revealed, which might help to comprehend the development of the turbulent flow in the draft tube.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology(Grant No.2010-0024619)
文摘A dimple appears on a free surface while rotating a cylinder tank filled with liquid. The dimple starts to concentrically deeper to a drain port at the bottom center of the tank. Over time, the dimple penetrates the drain port, a free surface forms a long and slender string shape in the tank, and a so-called vortexing (air core) phenomenon occurs. The generation of a vortex core depends on the size of the tank and drain port, and on the properties of the liquid in the tank. In this study, the liquid level and the time at which the vortex core is initially generated are numerically investigated using different values of tank diameter, drain port diameter, and ini- tial tank rotational speeds. Instead of a full three-dimensional analysis, a two-dimensional axisymmetric simulation is conducted. The momentum conservation equation in the circumferential direction is additionally solved in the two-dimensional mesh system. Several non-dimensional variables are created: the ratio of the air core generation distance and tank diameter, the diameter ratio of the tank and drain port, the rotational Reynolds number, the rotational Froude number, and the rotational Weber number. Finally, the non-dimensional air core generation distance is correlated with the other non-dimensional parameters.
文摘We give a brief review of the asymptotic theory of slender vortex filaments with emphases on (i) the choices of scalings and small parameters characterizing the physical problem,(ii) the key steps in the formulation of the theory and (iii) the assumptions and/or restrictions on the theory of Callegari and Ting (1978).We present highlights of an extension of the 1978 asymptotic theory:the analyses for core structures with axial variation.Making use of the physical insights gained from the analyses,we present a new derivation of the evolution equations for the core structure.The new one is simpler and straightforward and shows the physics clearly.
基金Project supported by the National Natural Science Foundation of China(Grant No.11404053)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.n130405011)
文摘Nonlinear vortex gyrotropic motion in a three-nanocontacts system is investigated by micromagnetic slmulations and analytical calculations. Three out-of-plane spin-polarized currents are injected into a nanodisk through a centered nanocontact and two off-centered nanocontacts, respectively. For current combination (ipl, ip0, ip2) = (-1,1, -1), the trajectory of the vortex core is a peanut-like orbit, but it is an elliptical orbit for (ip1, ip0, ip2) = (1, 1, -1). Moreover, the gyrotropic frequency displays peaks for both current combinations. Analytical calculations based on the Thiele equation show that the changes of frequency can be ascribed mainly to the forces generated by the Oersted field accompanying the currents. We also demonstrate a dependence of eigenfrequency shifts on the direction and distance of the applied currents.
基金supported by the National Natural Science Foundation of China(Nos.12232002,12072017,12002199,and 11721202)。
文摘Three-Dimensional(3D)swirling flow structures,generated by a counter-rotating dualstage swirler in a confined chamber with a confinement ratio of 1.53,were experimentally investigated at Re=2.3×10^(5)using Tomographic Particle Image Velocimetry(Tomo-PIV)and planar Particle Image Velocimetry(PIV).Based on the analysis of the 3D time-averaged swirling flow structures and 3D Proper Orthogonal Decomposition(POD)of the Tomo-PIV data,typical coherent flow structures,including the Corner Recirculation Zone(CRZ),Central Recirculation Zone(CTRZ),and Lip Recirculation Zone(LRZ),were extracted.The counter-rotating dual-stage swirler with a Venturi flare generates the independence process of vortex breakdown from the main stage and pilot stage,leading to the formation of an LRZ and a smaller CTRZ near the nozzle outlet.The confinement squeezes the CRZ to the corner and causes a reverse rotation flow to limit the shape of the CTRZ.A large-scale flow structure caused by the main stage features an explosive breakup,flapping,and Precessing Vortex Core(PVC).The explosive breakup mode dominates the swirling flow structures owing to the expansion and construction of the main jet,whereas the flapping mode is related to the wake perturbation.Confinement limits the expansion of PVC and causes it to contract after the impacting area.
文摘Experiments were conducted to study the generation of air core and its effect on the outflow shape and discharge in a cylindrical water tank with a bottom well-designed outlet. Depending on the stages of the air core in the tank, the outflow shape can vary from a smooth water jet to a smooth spindle shape with air-core, and to water sprays. The diameter of the nozzle size also has influence on the outflow pattern. The existence of the penetrated air core can dramatically reduce the outflow discharge, with the discharge coefficient decreasing with the nozzle diameter.