Vortex beams have attracted great attention due to their promising applications in the fields of high-capacity optical communication,optical micromanipulation,and quantum information processing.Here,we demonstrate vor...Vortex beams have attracted great attention due to their promising applications in the fields of high-capacity optical communication,optical micromanipulation,and quantum information processing.Here,we demonstrate vortex beams with flexible control of the topological charge and modes in a carbon dots random laser for the first time.Vortex beams with different types,including the Laguerre-Gaussian(LG),Bessel-Gaussian(BG),LG-superposition,and polarized vortex beams with topological charges up to 50,have been successfully achieved.Moreover,vortex beams can be well realized in carbon dots random lasers with different emission wavelengths covering from 465 to 612 nm.This work would not only enrich the types of vortex laser,especially for solution-processable lasers,but also provide a new route to realizing multicolor and wavelength-tunable vortex lasers.展开更多
Orbital angular momentum(OAM)conversion is critical in understanding interactions between a structural sound field and a planar lattice.Herein,we explore the evolution of a monochromatic acoustic vortex beam(AVB)that ...Orbital angular momentum(OAM)conversion is critical in understanding interactions between a structural sound field and a planar lattice.Herein,we explore the evolution of a monochromatic acoustic vortex beam(AVB)that is scattered by a phononic crystal(PnC)or a correlated random lattice.The phenomenon is ascribed to the enhanced orbit–orbit angular momentum coupling induced by the band structure.By modifying the coupling condition,accurate and continuous micromanipulation of AVBs can be achieved,including the transverse/lateral gravity shift,the dynamics of the phase singularities,and the spatial distribution of acoustic pressure,etc.This research provides insight to the inhomogeneous coupling of AVBs with both propagating Bloch waves and localized Anderson modes,and may facilitate development of novel OAM-based acoustic devices for active sound field manipulation.展开更多
The vector vortex beam(VVB)has attracted significant attention due to its intrinsic diversity of information and has found great applications in both classical and quantum communications.However,a VVB is unavoidably a...The vector vortex beam(VVB)has attracted significant attention due to its intrinsic diversity of information and has found great applications in both classical and quantum communications.However,a VVB is unavoidably affected by atmospheric turbulence(AT)when it propagates through the free-space optical communication environment,which results in detection errors at the receiver.In this paper,we propose a VVB classification scheme to detect VVBs with continuously changing polarization states under AT,where a diffractive deep neural network(DDNN)is designed and trained to classify the intensity distribution of the input distorted VVBs,and the horizontal direction of polarization of the input distorted beam is adopted as the feature for the classification through the DDNN.The numerical simulations and experimental results demonstrate that the proposed scheme has high accuracy in classification tasks.The energy distribution percentage remains above 95%from weak to medium AT,and the classification accuracy can remain above 95%for various strengths of turbulence.It has a faster convergence and better accuracy than that based on a convolutional neural network.展开更多
The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtai...The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated.展开更多
Tight focusing of axially symmetric polarized vortex beams is studied numerically based on vector diffraction theory. The mathematical expressions for the focused fields are derived. Simulation results show that the f...Tight focusing of axially symmetric polarized vortex beams is studied numerically based on vector diffraction theory. The mathematical expressions for the focused fields are derived. Simulation results show that the focused fields and phase distributions at focus are largely influenced by both the polarization order and topological charge of the incident beams. Moreover, focal spots with flat-topped or tightly-focused patterns can be flexibly achieved by carefully choosing the polar- ization order and the topological charge, which confirms the potential of such beams in wide applications, such as optical tweezers, laser printing, lithography, and material processing.展开更多
Last decade has witnessed a rapid development of the generation of terahertz(THz)vortex beams as well as their wide applications,mainly due to their unique combination characteristics of regular THz radiation and orbi...Last decade has witnessed a rapid development of the generation of terahertz(THz)vortex beams as well as their wide applications,mainly due to their unique combination characteristics of regular THz radiation and orbital angular momentum(OAM).Here we have reviewed the ways to generate THz vortex beams by two representative scenarios,i.e.,THz wavefront modulation via specific devices,and direct excitation of the helicity of THz vortex beams.The former is similar to those wavefront engineering devices in the optical and infrared(IR)domain,but just with suitable THz materials,while the latter is newly-developed in THz regime and some of the physical mechanisms still have not been explained explicitly enough though,which would provide both challenges and opportunities for THz vortex beam generation.As for their applications,thanks to the recent development of THz optics and singular optics,THz vortex beams have potentials to open doors towards a myriad of practice applications in many fields.Besides,some representative potential applications are evaluated such as THz wireless communication,THz super-resolution imaging,manipulating chiral matters,accelerating electron bunches,and detecting astrophysical sources.展开更多
In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex(CAiGV)beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how...In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex(CAiGV)beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how the linear chirp parameters, the quadratic chirp parameters, and the Gaussian factors influence the nonparaxial propagation dynamics of the CAiGV beams. The intensity, the energy flow, the beam center, and the angular momentum of the CAiGV beams are deeply investigated. It is shown that the Gaussian factors have a great effect on the intensity and the centroid positions of the CAiGV beams. With the Gaussian factors increasing, the intensity of CAiGV beams decreases rapidly. The main lobes of the transverse intensity distribution of the CAiGV beams are similar to triangles.展开更多
The theoretical and experimental results of tightly focused radially polarized vortex beams are demonstrated. An auto-focus technology is introduced into the measurement system in order to enhance the measurement prec...The theoretical and experimental results of tightly focused radially polarized vortex beams are demonstrated. An auto-focus technology is introduced into the measurement system in order to enhance the measurement precision, and the radially polarized vortex beams are generated by a liquid-crystal polarization converter and a vortex phase plate. The focused fields of radially polarized vortex beams with different topological charges at numerical apertures (NAs) of 0.65 and 0.85 are measured respectively, and the results indicate that the total intensity distribution at focus is dependent not only on the NA of the focusing objective lens and polarization pattern of the beam but also on the topological charge l of the beam. Some unique focusing properties of radially polarized vortex beams with fractional topological charges are presented based on numerical calculations. The experimental verification paves the way for some practical applications of radially polarized vortex beams, such as in optical trapping, near-field microscopy, and material processing.展开更多
The generation and propagation of partially coherent vortex beams have been investigated experimentally.It is found that a vortex beam with more uniform intensity distribution can be obtained by decreasing the coheren...The generation and propagation of partially coherent vortex beams have been investigated experimentally.It is found that a vortex beam with more uniform intensity distribution can be obtained by decreasing the coherence of the beam.We find that the beam shape of a completely coherent beam will keep hollow profile invariant during its propagation in free space.However,the center of the beam turns to be blurred for a partially coherent vortex beam on propagation.It is also found that the beam spreads more rapidly for the vortex beam with lower coherence,and this influence can be decreased by increasing the topological charge of the vortex beam.展开更多
Based on vectorial Debye theory, the focusing properties of partially polarized vortex beam by high numerical aperture Fresnel zone plate are investigated. The effects of the numerical apertures of and the phase diffe...Based on vectorial Debye theory, the focusing properties of partially polarized vortex beam by high numerical aperture Fresnel zone plate are investigated. The effects of the numerical apertures of and the phase difference of binary phase Fresnel zone plates, the topological charge of vortex beam and the degree of polarization of incident beam on the intensity distribution and degree of coherence in the focal plane are investigated in detail. It is shown that elliptical light spots and the flat top beam can be obtained by selecting certain parameters. Studies of degree of coherence reveal that the degree of coherence between x and y components of the electric field, which is zero in the source plane, is improved in the focal plane for vortex beam, but it is hardly changed for the nonvortex beam. It is also proved that any two of the three electric field components Ex, Ey and Ez are completely coherent everywhere in the focal region if the incident light beam is linearly polarized.展开更多
Elliptical airy vortex beams(EAVBs) can spontaneously form easily identifiable topological charge focal spots. They are used for topological charge detection of vortex beams because they have the abruptly autofocusing...Elliptical airy vortex beams(EAVBs) can spontaneously form easily identifiable topological charge focal spots. They are used for topological charge detection of vortex beams because they have the abruptly autofocusing properties of circular airy vortex beams and exhibit unique propagation characteristics. We study the use of the dynamic phase and Pancharatnam–Berry phase principles for generation and modulation of EAVBs by designing complex-amplitude metasurface and phase-only metasurface, at an operating wavelength of 1500 nm. It is found that the focusing pattern of EAVBs in the autofocusing plane splits into |m| + 1 tilted bright spots from the original ring, and the tilted direction is related to the sign of the topological charge number m. Due to the advantages of ultra-thin, ultra-light, and small size of the metasurface, our designed metasurface device has potential applications in improving the channel capacity based on orbital angular momentum communication, information coding, and particle capture compared to spatial light modulation systems that generate EAVBs.展开更多
The propagation dynamics of a chirped Airy vortex(CAiV) beam with x-polarization in uniaxial crystals orthogonal to the optical axis is studied analytically and numerically. The effect of the ratio of extraordinary ...The propagation dynamics of a chirped Airy vortex(CAiV) beam with x-polarization in uniaxial crystals orthogonal to the optical axis is studied analytically and numerically. The effect of the ratio of extraordinary and ordinary refractive indices, the chirp parameter, as well as the propagation distance is analyzed, which shows that the focused position of the CAi V beams can be controlled through changing the ratio of the extraordinary and ordinary refractive indices. In addition,with the propagation distance increasing, the asymmetry of the intensity and the angular momentum of the CAi V beam during propagation becomes much more visible. The variation of the chirp parameters can change the attenuation velocity of the vortex as well.展开更多
Tight focusing properties of an azimuthally polarized Gaussian beam with a pair of vortices through a dielectric interface is theoretically investigated by vector diffraction theory. For the incident beam with a pair ...Tight focusing properties of an azimuthally polarized Gaussian beam with a pair of vortices through a dielectric interface is theoretically investigated by vector diffraction theory. For the incident beam with a pair of vortices of opposite topological charges, the vortices move toward each other, annihilate and revive in the vicinity of focal plane, which results in the generation of many novel focal patterns. The usable focal structures generated through the tight focusing of the double-vortex beams may find applications in micro-particle trapping, manipulation, and material processing, etc.展开更多
The solar-blind ultraviolet(UV)wavelength is particularly interesting within the range of 200 nm–300 nm.Here,we propose a focusing metalens,focusing vortex beam(VB)metalens and metalens array that specifically work i...The solar-blind ultraviolet(UV)wavelength is particularly interesting within the range of 200 nm–300 nm.Here,we propose a focusing metalens,focusing vortex beam(VB)metalens and metalens array that specifically work in the UV band to focus a beam or VB.Firstly,a high numerical aperture(NA)focusing metalens working at a wavelength of 214.2 nm was designed,and the NA reached 0.83.The corresponding conversion efficiency of the unit structure reached as high as 94%,and the full width at half maximum was only 117.2 nm.Metalenses with large NA can act as optical tweezers and can be applied to trap ultracold atoms and molecules.Secondly,a focused VB metalens in the wavelength range of200 nm–300 nm was also designed,which can convert polarized light into a VB and focus the VB simultaneously.Finally,a metalens array was developed to focus VBs with different topological charges on the same focal plane.This series of UV metalenses could be widely used in UV microscopy,photolithography,photonics communication,etc.展开更多
As a kind of special acoustic field, the helical wavefront of an acoustic vortex(AV) beam is demonstrated to have a pressure zero with phase singularity at the center in the transverse plane. The orbital angular mom...As a kind of special acoustic field, the helical wavefront of an acoustic vortex(AV) beam is demonstrated to have a pressure zero with phase singularity at the center in the transverse plane. The orbital angular momentum of AVs can be applied to the field of particle manipulation, which attracts more and more attention in acoustic researches. In this paper,by using the simplified circular array of point sources, dual coaxial AV beams are excited by the even-and odd-numbered sources with the topological charges of l_E and l_O based on the phase-coded approach, and the composite acoustic field with an on-axis center-AV and multiple off-axis sub-AVs can be generated by the superimposition of the AV beams for|l_E| ≠ |l_O|. The generation of edge phase dislocation is theoretically derived and numerically analyzed for l_E=-l_O. The numbers and the topological charges as well as the locations of the center-AV and sub-AVs are demonstrated, which are proved to be determined by the topological charges of the coaxial AV beams. The proposed approach breaks through the limit of only one on-axis AV with a single topological charge along the beam axis, and also provides the feasibility of off-axis particle trapping with multiple AVs in object manipulation.展开更多
We investigated the spin splitting of vortex beam on the surface of biaxial natural hyperbolic materials(NHMs)rotated by an angle with respect to the incident plane. An obvious asymmetry of spatial shifts produced by ...We investigated the spin splitting of vortex beam on the surface of biaxial natural hyperbolic materials(NHMs)rotated by an angle with respect to the incident plane. An obvious asymmetry of spatial shifts produced by the left-handed circularly(LCP) component and right-handed circularly polarized(RCP) component is exhibited. We derived the analytical expression for in-and out-of-plane spatial shifts for each spin component of the vortex beam. The orientation angle of the optical axis plays a key role in the spin splitting between the two spin components, which can be reflected in the simple expressions for spatial shifts without the rotation angle. Based on an α-MoO_(3) biaxial NHM, the spatial shifts of the two spin components with the topological charge were investigated. As the topological charge increases, the spatial shifts also increase;in addition, a tiny spatial shift close to zero can be obtained if we control the incident frequency or the polarization of the reflected beams. It can also be concluded that the maximum of the spin splitting results from the LCP component at p-incidence and the RCP component at s-incidence in the RB-Ⅱ hyperbolic frequency band. The effect of the incident angle and the thickness of the α-MoO_(3) film on spin splitting is also considered. These results can be used for manipulating infrared radiation and optical detection.展开更多
The transmission of terahertz(THz)Bessel vortex beams through a multi-layered anisotropic magnetized plasma slab is investigated by using a hybrid method of cylindrical vector wave functions(CVWFs)and Fourier transfor...The transmission of terahertz(THz)Bessel vortex beams through a multi-layered anisotropic magnetized plasma slab is investigated by using a hybrid method of cylindrical vector wave functions(CVWFs)and Fourier transform.On the basis of the electromagnetic boundary conditions on each interface,a cascade form of expansion coefficients of the reflected and transmitted fields is obtained.Taking a double Gaussian distribution of the plasma density as an example,the influences of the applied magnetic field,the incident angle and polarization mode of the incident beams on the magnitude,OAM mode and polarization of the transmitted beams are analyzed in detail.The results indicate that the applied magnetic field has a major effect upon the polarization state of the transmitted fields but not upon the transmitted OAM spectrum.The incident angle has a powerful influence upon both the amplitude profile and the OAM spectrum of the transmitted beam.Furthermore,for multiple coaxial vortex beams,an increase of the maximum value of the plasma density causes more remarkable distortion of both the profile and OAM spectrum of the transmitted beam.This research makes a stable foundation for the THz OAM multiplexing/demultiplexing technology in a magnetized plasma environment.展开更多
Based on the Hermite–Gaussian expansion of the Lorentz distribution and the complex Gaussian expansion of the aperture function, an analytical expression of the Lorentz–Gauss vortex beam with one topological charge ...Based on the Hermite–Gaussian expansion of the Lorentz distribution and the complex Gaussian expansion of the aperture function, an analytical expression of the Lorentz–Gauss vortex beam with one topological charge passing through a single slit is derived. By using the obtained analytical expressions, the properties of the Lorentz–Gauss vortex beam passing through a single slit are numerically demonstrated. According to the intensity distribution or the phase distribution of the Lorentz–Gauss vortex beam, one can judge whether the topological charge is positive or negative. The effects of the topological charge and three beam parameters on the orbital angular momentum density as well as the spiral spectra are systematically investigated respectively. The optimal choice for measuring the topological charge of the diffracted Lorentz–Gauss vortex beam is to make the single slit width wider than the waist of the Gaussian part.展开更多
Emerging as a family of waves,Janus waves are known to have“real”and“virtual”components under inversion of the propagation direction.Although tremendous interest has been evoked in vortex beams featuring spiral wa...Emerging as a family of waves,Janus waves are known to have“real”and“virtual”components under inversion of the propagation direction.Although tremendous interest has been evoked in vortex beams featuring spiral wavefronts,little research has been devoted to the vortex beam embedded Janus waves,i.e.,Janus vortex beams.We propose a liquid crystal(LC)Pancharatnam–Berry(PB)phase element to demonstrate the realization of the Janus vortex beams and the modulation of the associated orbit angular momentum(OAM)and spin angular momentum(SAM).The generated Janus vortex beams show opposite OAM and SAM states at two distinct foci,revealing a spin-orbit interaction during propagation enabled by the LC PB phase element,which may play special roles in applications such as optical encryption and decryption.Other merits like reconfigurability and flexible switching between Janus vortex beams and autofocusing or autodefocusing vortex beams additionally increase the degree of freedom of manipulating vortex beams.This work provides a platform for tailoring complex structured light and may enrich the applications of vortex beams in classical and quantum optics.展开更多
基金financially supported by the Science and Technology Major Project of Henan Province (No.221100230300)。
文摘Vortex beams have attracted great attention due to their promising applications in the fields of high-capacity optical communication,optical micromanipulation,and quantum information processing.Here,we demonstrate vortex beams with flexible control of the topological charge and modes in a carbon dots random laser for the first time.Vortex beams with different types,including the Laguerre-Gaussian(LG),Bessel-Gaussian(BG),LG-superposition,and polarized vortex beams with topological charges up to 50,have been successfully achieved.Moreover,vortex beams can be well realized in carbon dots random lasers with different emission wavelengths covering from 465 to 612 nm.This work would not only enrich the types of vortex laser,especially for solution-processable lasers,but also provide a new route to realizing multicolor and wavelength-tunable vortex lasers.
基金the National Natural Sciencefoundation of China (Grant No. 12174085)the FundamentalResearch Funds for the Central Universities (GrantNo. B220202018)+1 种基金the Basic Science (Natural Science) ResearchProject for the Universities of Jiangsu Province (GrantNo. 23KJD140002)Natural Science Foundation of Nantong(Grant No. JC2023081).
文摘Orbital angular momentum(OAM)conversion is critical in understanding interactions between a structural sound field and a planar lattice.Herein,we explore the evolution of a monochromatic acoustic vortex beam(AVB)that is scattered by a phononic crystal(PnC)or a correlated random lattice.The phenomenon is ascribed to the enhanced orbit–orbit angular momentum coupling induced by the band structure.By modifying the coupling condition,accurate and continuous micromanipulation of AVBs can be achieved,including the transverse/lateral gravity shift,the dynamics of the phase singularities,and the spatial distribution of acoustic pressure,etc.This research provides insight to the inhomogeneous coupling of AVBs with both propagating Bloch waves and localized Anderson modes,and may facilitate development of novel OAM-based acoustic devices for active sound field manipulation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62375140 and 62001249)the Open Research Fund of National Laboratory of Solid State Microstructures(Grant No.M36055).
文摘The vector vortex beam(VVB)has attracted significant attention due to its intrinsic diversity of information and has found great applications in both classical and quantum communications.However,a VVB is unavoidably affected by atmospheric turbulence(AT)when it propagates through the free-space optical communication environment,which results in detection errors at the receiver.In this paper,we propose a VVB classification scheme to detect VVBs with continuously changing polarization states under AT,where a diffractive deep neural network(DDNN)is designed and trained to classify the intensity distribution of the input distorted VVBs,and the horizontal direction of polarization of the input distorted beam is adopted as the feature for the classification through the DDNN.The numerical simulations and experimental results demonstrate that the proposed scheme has high accuracy in classification tasks.The energy distribution percentage remains above 95%from weak to medium AT,and the classification accuracy can remain above 95%for various strengths of turbulence.It has a faster convergence and better accuracy than that based on a convolutional neural network.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374108,11374107,10904041,and 11547212)the Foundation of Cultivating Outstanding Young Scholars of Guangdong Province,China+2 种基金the CAS Key Laboratory of Geospace Environment,University of Science and Technology of Chinathe National Training Program of Innovation and Entrepreneurship for Undergraduates(Grant No.2015093)the Science and Technology Projects of Guangdong Province,China(Grant No.2013B031800011)
文摘The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61108047 and 61240057)the Program for New Century Excellent Talentsin University,China(Grant No.NCET-13-0667)the Beijing Excellent Talent Training Project,China(Grant No.2011D005007000008)
文摘Tight focusing of axially symmetric polarized vortex beams is studied numerically based on vector diffraction theory. The mathematical expressions for the focused fields are derived. Simulation results show that the focused fields and phase distributions at focus are largely influenced by both the polarization order and topological charge of the incident beams. Moreover, focal spots with flat-topped or tightly-focused patterns can be flexibly achieved by carefully choosing the polar- ization order and the topological charge, which confirms the potential of such beams in wide applications, such as optical tweezers, laser printing, lithography, and material processing.
基金Project supported partly by the National Natural Science Foundation of China(Grant Nos.61775142 and 61705132)Shenzhen Fundamental Research and Discipline Layout Project,China(Grant Nos.JCYJ20170412105812811,JCYJ20190808164007485,JCYJ20190808121817100,and JCYJ20190808115601653).
文摘Last decade has witnessed a rapid development of the generation of terahertz(THz)vortex beams as well as their wide applications,mainly due to their unique combination characteristics of regular THz radiation and orbital angular momentum(OAM).Here we have reviewed the ways to generate THz vortex beams by two representative scenarios,i.e.,THz wavefront modulation via specific devices,and direct excitation of the helicity of THz vortex beams.The former is similar to those wavefront engineering devices in the optical and infrared(IR)domain,but just with suitable THz materials,while the latter is newly-developed in THz regime and some of the physical mechanisms still have not been explained explicitly enough though,which would provide both challenges and opportunities for THz vortex beam generation.As for their applications,thanks to the recent development of THz optics and singular optics,THz vortex beams have potentials to open doors towards a myriad of practice applications in many fields.Besides,some representative potential applications are evaluated such as THz wireless communication,THz super-resolution imaging,manipulating chiral matters,accelerating electron bunches,and detecting astrophysical sources.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775083 and 11374108)
文摘In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex(CAiGV)beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how the linear chirp parameters, the quadratic chirp parameters, and the Gaussian factors influence the nonparaxial propagation dynamics of the CAiGV beams. The intensity, the energy flow, the beam center, and the angular momentum of the CAiGV beams are deeply investigated. It is shown that the Gaussian factors have a great effect on the intensity and the centroid positions of the CAiGV beams. With the Gaussian factors increasing, the intensity of CAiGV beams decreases rapidly. The main lobes of the transverse intensity distribution of the CAiGV beams are similar to triangles.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61108047 and 60908015)the Beijing Excellent Talent Training Project,China (Grant No. 2011D005007000008)
文摘The theoretical and experimental results of tightly focused radially polarized vortex beams are demonstrated. An auto-focus technology is introduced into the measurement system in order to enhance the measurement precision, and the radially polarized vortex beams are generated by a liquid-crystal polarization converter and a vortex phase plate. The focused fields of radially polarized vortex beams with different topological charges at numerical apertures (NAs) of 0.65 and 0.85 are measured respectively, and the results indicate that the total intensity distribution at focus is dependent not only on the NA of the focusing objective lens and polarization pattern of the beam but also on the topological charge l of the beam. Some unique focusing properties of radially polarized vortex beams with fractional topological charges are presented based on numerical calculations. The experimental verification paves the way for some practical applications of radially polarized vortex beams, such as in optical trapping, near-field microscopy, and material processing.
基金supported by the Key Project of Science and Technology (2007H0027) of Fujin Provincethe Natural Science Founation of Fujin Province (A0810012)
文摘The generation and propagation of partially coherent vortex beams have been investigated experimentally.It is found that a vortex beam with more uniform intensity distribution can be obtained by decreasing the coherence of the beam.We find that the beam shape of a completely coherent beam will keep hollow profile invariant during its propagation in free space.However,the center of the beam turns to be blurred for a partially coherent vortex beam on propagation.It is also found that the beam spreads more rapidly for the vortex beam with lower coherence,and this influence can be decreased by increasing the topological charge of the vortex beam.
基金supported by the National Natural Science Foundation of China(Grant No.60977068)the Open Research Fund of Key Laboratory of Atmospheric Composition and Optical Radiation,Chinese Academy of Sciences(Grant No.SKLST200912)the Overseas Chinese Affairs Office of the State Council(Grant No.lOQZROl)
文摘Based on vectorial Debye theory, the focusing properties of partially polarized vortex beam by high numerical aperture Fresnel zone plate are investigated. The effects of the numerical apertures of and the phase difference of binary phase Fresnel zone plates, the topological charge of vortex beam and the degree of polarization of incident beam on the intensity distribution and degree of coherence in the focal plane are investigated in detail. It is shown that elliptical light spots and the flat top beam can be obtained by selecting certain parameters. Studies of degree of coherence reveal that the degree of coherence between x and y components of the electric field, which is zero in the source plane, is improved in the focal plane for vortex beam, but it is hardly changed for the nonvortex beam. It is also proved that any two of the three electric field components Ex, Ey and Ez are completely coherent everywhere in the focal region if the incident light beam is linearly polarized.
基金supported by the National Natural Science Foundation of China (Grant No. 61975185)the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY19F030004 and LY20F050002)。
文摘Elliptical airy vortex beams(EAVBs) can spontaneously form easily identifiable topological charge focal spots. They are used for topological charge detection of vortex beams because they have the abruptly autofocusing properties of circular airy vortex beams and exhibit unique propagation characteristics. We study the use of the dynamic phase and Pancharatnam–Berry phase principles for generation and modulation of EAVBs by designing complex-amplitude metasurface and phase-only metasurface, at an operating wavelength of 1500 nm. It is found that the focusing pattern of EAVBs in the autofocusing plane splits into |m| + 1 tilted bright spots from the original ring, and the tilted direction is related to the sign of the topological charge number m. Due to the advantages of ultra-thin, ultra-light, and small size of the metasurface, our designed metasurface device has potential applications in improving the channel capacity based on orbital angular momentum communication, information coding, and particle capture compared to spatial light modulation systems that generate EAVBs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775083 and 11374108)the National Training Program of Innovation and Entrepreneurship for Undergraduates,ChinaSpecial Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation,China(Grant No.pdjh2017b0137)
文摘The propagation dynamics of a chirped Airy vortex(CAiV) beam with x-polarization in uniaxial crystals orthogonal to the optical axis is studied analytically and numerically. The effect of the ratio of extraordinary and ordinary refractive indices, the chirp parameter, as well as the propagation distance is analyzed, which shows that the focused position of the CAi V beams can be controlled through changing the ratio of the extraordinary and ordinary refractive indices. In addition,with the propagation distance increasing, the asymmetry of the intensity and the angular momentum of the CAi V beam during propagation becomes much more visible. The variation of the chirp parameters can change the attenuation velocity of the vortex as well.
文摘Tight focusing properties of an azimuthally polarized Gaussian beam with a pair of vortices through a dielectric interface is theoretically investigated by vector diffraction theory. For the incident beam with a pair of vortices of opposite topological charges, the vortices move toward each other, annihilate and revive in the vicinity of focal plane, which results in the generation of many novel focal patterns. The usable focal structures generated through the tight focusing of the double-vortex beams may find applications in micro-particle trapping, manipulation, and material processing, etc.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60907003,61805278,61875168,and 22134005)Chongqing Science Funds for Distinguished Young Scientists(Grant No.cstc2021jcyj-jqX0027)+6 种基金Innovation Research 2035 Pilot Plan of Southwest University(Grant No.SWU-XDPY22012)China Postdoctoral Science Foundation(Grant No.2018M633704)Innovation Support Program for Overseas Students in Chongqing(Grant No.cx2021008)Foundation of NUDT(Grant Nos.JC13-02-13 and ZK17-0301)Hunan Provincial Natural Science Foundation of China(Grant No.13JJ3001)Program for New Century Excellent Talents in University(Grant No.NCET-12-0142)Chongqing Talents Program for Outstanding Scientists(Grant No.cstc2021ycjh-bgzxm0178)。
文摘The solar-blind ultraviolet(UV)wavelength is particularly interesting within the range of 200 nm–300 nm.Here,we propose a focusing metalens,focusing vortex beam(VB)metalens and metalens array that specifically work in the UV band to focus a beam or VB.Firstly,a high numerical aperture(NA)focusing metalens working at a wavelength of 214.2 nm was designed,and the NA reached 0.83.The corresponding conversion efficiency of the unit structure reached as high as 94%,and the full width at half maximum was only 117.2 nm.Metalenses with large NA can act as optical tweezers and can be applied to trap ultracold atoms and molecules.Secondly,a focused VB metalens in the wavelength range of200 nm–300 nm was also designed,which can convert polarized light into a VB and focus the VB simultaneously.Finally,a metalens array was developed to focus VBs with different topological charges on the same focal plane.This series of UV metalenses could be widely used in UV microscopy,photolithography,photonics communication,etc.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474166 and 11604156)the Science and Technology Cooperation Projects of People’s Republic of China–Romania(Grant No.42-23)+2 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161013)the Postdoctoral Science Foundation of China(Grant No.2016M591874)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘As a kind of special acoustic field, the helical wavefront of an acoustic vortex(AV) beam is demonstrated to have a pressure zero with phase singularity at the center in the transverse plane. The orbital angular momentum of AVs can be applied to the field of particle manipulation, which attracts more and more attention in acoustic researches. In this paper,by using the simplified circular array of point sources, dual coaxial AV beams are excited by the even-and odd-numbered sources with the topological charges of l_E and l_O based on the phase-coded approach, and the composite acoustic field with an on-axis center-AV and multiple off-axis sub-AVs can be generated by the superimposition of the AV beams for|l_E| ≠ |l_O|. The generation of edge phase dislocation is theoretically derived and numerically analyzed for l_E=-l_O. The numbers and the topological charges as well as the locations of the center-AV and sub-AVs are demonstrated, which are proved to be determined by the topological charges of the coaxial AV beams. The proposed approach breaks through the limit of only one on-axis AV with a single topological charge along the beam axis, and also provides the feasibility of off-axis particle trapping with multiple AVs in object manipulation.
基金Project supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2022F041)。
文摘We investigated the spin splitting of vortex beam on the surface of biaxial natural hyperbolic materials(NHMs)rotated by an angle with respect to the incident plane. An obvious asymmetry of spatial shifts produced by the left-handed circularly(LCP) component and right-handed circularly polarized(RCP) component is exhibited. We derived the analytical expression for in-and out-of-plane spatial shifts for each spin component of the vortex beam. The orientation angle of the optical axis plays a key role in the spin splitting between the two spin components, which can be reflected in the simple expressions for spatial shifts without the rotation angle. Based on an α-MoO_(3) biaxial NHM, the spatial shifts of the two spin components with the topological charge were investigated. As the topological charge increases, the spatial shifts also increase;in addition, a tiny spatial shift close to zero can be obtained if we control the incident frequency or the polarization of the reflected beams. It can also be concluded that the maximum of the spin splitting results from the LCP component at p-incidence and the RCP component at s-incidence in the RB-Ⅱ hyperbolic frequency band. The effect of the incident angle and the thickness of the α-MoO_(3) film on spin splitting is also considered. These results can be used for manipulating infrared radiation and optical detection.
基金supported by National Natural Science Foundation of China(Nos.62171355,61801349,and 61875156)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2020JM-192)+1 种基金the Stable Support Project of Basic Scientific Research Institutes(Nos.A131901W14,A132001W12)the Science and Technology Foundation of State Key Laboratory of Electromagnetic Environment,and the 111 Project(No.B17035)。
文摘The transmission of terahertz(THz)Bessel vortex beams through a multi-layered anisotropic magnetized plasma slab is investigated by using a hybrid method of cylindrical vector wave functions(CVWFs)and Fourier transform.On the basis of the electromagnetic boundary conditions on each interface,a cascade form of expansion coefficients of the reflected and transmitted fields is obtained.Taking a double Gaussian distribution of the plasma density as an example,the influences of the applied magnetic field,the incident angle and polarization mode of the incident beams on the magnitude,OAM mode and polarization of the transmitted beams are analyzed in detail.The results indicate that the applied magnetic field has a major effect upon the polarization state of the transmitted fields but not upon the transmitted OAM spectrum.The incident angle has a powerful influence upon both the amplitude profile and the OAM spectrum of the transmitted beam.Furthermore,for multiple coaxial vortex beams,an increase of the maximum value of the plasma density causes more remarkable distortion of both the profile and OAM spectrum of the transmitted beam.This research makes a stable foundation for the THz OAM multiplexing/demultiplexing technology in a magnetized plasma environment.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574272)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY16A040014)
文摘Based on the Hermite–Gaussian expansion of the Lorentz distribution and the complex Gaussian expansion of the aperture function, an analytical expression of the Lorentz–Gauss vortex beam with one topological charge passing through a single slit is derived. By using the obtained analytical expressions, the properties of the Lorentz–Gauss vortex beam passing through a single slit are numerically demonstrated. According to the intensity distribution or the phase distribution of the Lorentz–Gauss vortex beam, one can judge whether the topological charge is positive or negative. The effects of the topological charge and three beam parameters on the orbital angular momentum density as well as the spiral spectra are systematically investigated respectively. The optimal choice for measuring the topological charge of the diffracted Lorentz–Gauss vortex beam is to make the single slit width wider than the waist of the Gaussian part.
基金supported by the National Natural Science Foundation of China(NSFC)(12074313,12074312,12174309,and 62175200)National Key R&D Program of China(2017YFA0303800)Fundamental Research Funds for the Central Universities(3102019JC008).
文摘Emerging as a family of waves,Janus waves are known to have“real”and“virtual”components under inversion of the propagation direction.Although tremendous interest has been evoked in vortex beams featuring spiral wavefronts,little research has been devoted to the vortex beam embedded Janus waves,i.e.,Janus vortex beams.We propose a liquid crystal(LC)Pancharatnam–Berry(PB)phase element to demonstrate the realization of the Janus vortex beams and the modulation of the associated orbit angular momentum(OAM)and spin angular momentum(SAM).The generated Janus vortex beams show opposite OAM and SAM states at two distinct foci,revealing a spin-orbit interaction during propagation enabled by the LC PB phase element,which may play special roles in applications such as optical encryption and decryption.Other merits like reconfigurability and flexible switching between Janus vortex beams and autofocusing or autodefocusing vortex beams additionally increase the degree of freedom of manipulating vortex beams.This work provides a platform for tailoring complex structured light and may enrich the applications of vortex beams in classical and quantum optics.