期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Diapause induction and termination in a commonly univoltine leaf beetle ( Phratora vulgatissima) 被引量:3
1
作者 Peter Dalin 《Insect Science》 SCIE CAS CSCD 2011年第4期443-450,共8页
TheleafbeetlePhratoravulgatissima(Linnaeus 1758)iscommonlyunivoltine in south-central Sweden but may sometimes initiate a partial second generation. The current study was set out to investigate under what abiotic co... TheleafbeetlePhratoravulgatissima(Linnaeus 1758)iscommonlyunivoltine in south-central Sweden but may sometimes initiate a partial second generation. The current study was set out to investigate under what abiotic conditions the beetles initiate a second generation. Using climate chamber experiments, the beetles were shown to have a facultative reproductive diapause induced by declining day-length. The critical day-length (CDL) for diapause induction was estimated to be 18 h and 10 min. In the field, firstgeneration beetles developing to adulthood before August in 2009 became reproductively active and produced a second generation, but most individuals emerged later and were in reproductive diapause. P vulgatissima overwinter as adults and diapause was shown to be maintained until mid-winter in 2008/2009. The cumulative temperature requirement for oviposition after diapause termination was estimated to be 222 day-degrees with a 5.5℃ temperature threshold. Three different day-degree models that were developed to predict the phenology of female oviposition in the spring were validated by comparing model results with field data on the timing of oviposition in previous years. The study suggests that P vulgatissima may initiate a second generation in Sweden if development of the first generation is completed before August. Warmer spring and summer temperatures due to ongoing climate change may cause advanced insect phenology and faster completion of insect life-cycles at northern latitudes, which will affect the proportion of insects that initiate a second generation. 展开更多
关键词 climate change DIAPAUSE insect pests population dynamics seasonal adaptations voltinism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部