With the increasing penetration of renewable energy in power systems,grid structures and operational paradigms are undergoing profound transformations.When subjected to disturbances,the interaction between power elect...With the increasing penetration of renewable energy in power systems,grid structures and operational paradigms are undergoing profound transformations.When subjected to disturbances,the interaction between power electronic devices and dynamic loads introduces strongly nonlinear dynamic characteristics in grid voltage responses,posing significant threats to system security and stability.To achieve reliable short-term voltage stability assessment under large-scale renewable integration,this paper innovatively proposes a response-driven online assessment method based on energy function theory.First,energy modeling of system components is performed based on energy function theory,followed by analysis of energy interaction mechanisms during voltage instability.To address the challenge of traditional energy functions in online applications,a convolutional neural network-long short-term memory(CNNLSTM)hybrid artificial Intelligence approach is introduced.By quantifying the contribution of each energy component to voltage stability,key energy terms are identified.The measurable electrical quantities corresponding to these key energies serve as inputs,while the energy at the voltage unstable equilibrium point(UEP)obtained from offline simulations is used as both the energy threshold and the output of the artificial intelligence model,enabling the construction of an artificial intelligence model for energy threshold prediction.The measurable electrical quantities corresponding to these key energies serve as inputs,while the energy at the unstable equilibrium point(UEP)obtained from offline simulations acts as the output,enabling the construction of an artificial intelligence model for energy threshold prediction.Real-time response data are fed into the model to predict the system's instantaneous energy threshold,which is then compared with the transient energy at fault clearance to evaluate stability.Validation on both a 3-machine,10-bus system and the New England 10-machine,39-bus system confirms the method's adaptability and accuracy.The simulation results demonstrate that the proposed short-term voltage stability assessment model outperforms other methods in both accuracy and computational efficiency.展开更多
Li-rich Mn-based oxides(LRMOs)hold great promise as next-generation cathode materials for high-energy Li-ion batteries because of their low cost and high capacity.Nevertheless,the practical application of LRMOs is imp...Li-rich Mn-based oxides(LRMOs)hold great promise as next-generation cathode materials for high-energy Li-ion batteries because of their low cost and high capacity.Nevertheless,the practical application of LRMOs is impeded by their low initial Coulombic efficiency and rapid voltage decay.Herein,a V-doped layered-spinel coherent layer is constructed on the surface of a Co-free LRMO through a simple treatment with NH_(4)VO_(3).The layered-spinel coherent layer with 3D ion channels enhanced Li+diffusion efficiency,mitigates surface-inter-face reactions and suppresses irreversible oxygen release.Notably,V-doping significantly reduces the Bader charge of oxygen atoms,thereby impeding excessive oxidation of oxygen ions and further enhancing the stability of O-redox.The modified LRMO exhibites a remarkable initial Coulombic efficiency of 91.6%,signifi-cantly surpassing that of the original LRMO(74.4%).Furthermore,the treated sample showes an impressive capacity retention rate of 91.9%after 200 cycles,accompanied by a voltage decay of merely 0.47 mV per cycle.The proposed treatment approach is straightforward and significantly improves the initial Coulombic efficiency,voltage stability,and capacity stability of LRMO cathode materials,thus holding considerable promise for the development of high-energy Li-ion batteries.展开更多
The traditional voltage stability analysis method is mostly based on the deterministic mode1.and ignores the uncertainties of bus loads,power supplies,changes in network configuration and so on.However,the great expan...The traditional voltage stability analysis method is mostly based on the deterministic mode1.and ignores the uncertainties of bus loads,power supplies,changes in network configuration and so on.However,the great expansion of renewable power generations such as wind and solar energy in a power system has increased their uncertainty,and仃aditional techniques are limited in capturing their variable behavior.This leads to greater needs of new techniques and methodologies to properly quan tify the voltage stability of power systems.展开更多
Donor-acceptor co-doped rutile TiO_(2) ceramics with colossal permittivity(CP)have been extensively investigated in recent years due to their potential applications in modern microelectronics.In addition to CP and low...Donor-acceptor co-doped rutile TiO_(2) ceramics with colossal permittivity(CP)have been extensively investigated in recent years due to their potential applications in modern microelectronics.In addition to CP and low dielectric loss,voltage stability is an essential property for CP materials utilized in high-power and high-energy density storage devices.Unfortunately,the voltage stability of CP materials based on codoped TiO_(2) does not catch enough attention.Here,we propose a strategy to enhance the voltage stability of co-doped TiO_(2),where different ionic defect clusters are formed by two acceptor ions with different radii to localize free carriers and result in high performance CP materials.The(Ta+Al+La)co-doped TiO_(2) ceramic with suitable La/Al ratio exhibits colossal permittivity with excellent temperature stability as well as outstanding dc bias stability.The density functional theory analysis suggests that La^(3+)Al^(3+)V_(0)Ti^(3+)defect clusters and Ta^(5+)-Al^(3+)pairs are responsible for the excellent dielectric properties in(Ta+Al+La)co-doped TiO_(2).The results and mechanisms presented in this work open up a feasible route to design high performance CP materials via defect engineering.展开更多
The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonl...The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonlinear functions having multiple local minima and nonlinear and discontinuous constraints. To deal with the problem,quantum particle swarm optimization (QPSO) is firstly introduced in this paper,and according to QPSO,chaotic quantum particle swarm optimization (CQPSO) is presented,which makes use of the randomness,regularity and ergodicity of chaotic variables to improve the quantum particle swarm optimization algorithm. When the swarm is trapped in local minima,a smaller searching space chaos optimization is used to guide the swarm jumping out the local minima. So it can avoid the premature phenomenon and to trap in a local minima of QPSO. The feasibility and efficiency of the proposed algorithm are verified by the results of calculation and simulation for IEEE 14-buses and IEEE 30-buses systems.展开更多
With the increasing development of wind power,the scale of wind farms and unit capacity of wind turbines are getting larger and larger,and the impact of wind integration on power systems cannot be ignored.However,in m...With the increasing development of wind power,the scale of wind farms and unit capacity of wind turbines are getting larger and larger,and the impact of wind integration on power systems cannot be ignored.However,in most cases,the areas with a plenty of wind resources do not have strong grid structures.Furthermore,the characteristics of wind power dictate that wind turbines need to absorb reactive power during operation.Because of the strong correlation between voltage stability and systems' reactive power,the impacts of wind integration on voltage stability has become an important issue.Based on the power system simulation software DIgSILENT and combined analysis of actual practice,this paper investigates the impacts of two types of wind farms on voltage stability:namely a type of wind farms which are constituted by constant speed wind turbines based on common induction generators(IG) and another type of wind farms which are constituted by VSCF wind turbines based on doubly-fed induction generators(DFIG).Through investigation the critical fault clearing time is presented for different outputs of wind farms.Moreover,the impacts of static var compensator(SVC) and static synchronous compensator(STATCOM) on transient voltage stability in IG-based wind farms are studied to improve the security and stability of the Jiangsu power grid after the integration of large scale wind power.展开更多
This paper studies on the change mechanisms of the voltage stability caused by the grid connection of front-end speed-controlled wind turbines(FSCWT)integrating into power system.First of all,the differential algebrai...This paper studies on the change mechanisms of the voltage stability caused by the grid connection of front-end speed-controlled wind turbines(FSCWT)integrating into power system.First of all,the differential algebraic equations describing the dynamic characteristics of wind turbines are illustrated.Then,under the guidance of IEEE3 node system model,the influence of the angular velocity of wind turbines,the reactive power and the active power at load bus on the voltage stability of grid-connection has been analyzed by using bifurcation theory.Finally,the method of linear-state feedback control has been applied to the original system in accordance with the bifurcation phenomenon of grid-connected voltage caused by the increase in the active power at load bus.Research shows that voltage at the grid-connected point would be changed with the fluctuation of turbines angular velocity.And increasing its reactive power can enhance voltage at the grid-connected point;problem of bifurcation at the grid-connected point can be delayed when increasing the gain k s of feedback controller within a certain range.展开更多
This paper presents a newly developed proximity indicator for voltage stability assessment which can be used to predict critical real system load and voltages at various load buses at critical loading point.The proxim...This paper presents a newly developed proximity indicator for voltage stability assessment which can be used to predict critical real system load and voltages at various load buses at critical loading point.The proximity indicator varies almost parabolic with total real load demand and reaches orthogonally to real load axis.This relation has been utilized to predict critical loading point.It has been shown that two operating points are needed for estimating critical point and proper selection of operating points and variation of proximity indicator near collapse point highly affect the accuracy of estimation.Simulation is based on load flow equations and system real and reactive loadings have been increased in proportion with base case scenario for IEEE 14 and IEEE 25 bus test systems to demonstrate the behaviour of proposed proximity indicator.CPF has been used as benchmark to check the accuracy of estimation.展开更多
The static voltage stability of the power system integrating wind farms adopting different kinds of wind turbines is analyzed. Through the simulation of one certain local power grid in Xinjiang Uygur Autonomous Region...The static voltage stability of the power system integrating wind farms adopting different kinds of wind turbines is analyzed. Through the simulation of one certain local power grid in Xinjiang Uygur Autonomous Region, the PV curves at the point of common coupling (PCC), key buses and important substations are plotted; the variation of voltage as well as the limit and margin of static stability are analyzed. It is resulted from the simulation that the limit of static voltage at weak nodes is lower, and the static voltage of the power system with wind farms adopting doubly-fed induction generators (DFIG) is more stable than that with wind farms adopting common asynchronous generators.展开更多
Power system operations can be optimized using power electronics based FACTS devices. The location of these devices at appropriate transmission line plays a major role in their performance. In this paper, two bio-insp...Power system operations can be optimized using power electronics based FACTS devices. The location of these devices at appropriate transmission line plays a major role in their performance. In this paper, two bio-inspired algorithms are used to optimally locate two FACTS devices: UPFC and STATCOM, so as to reduce the voltage collapse and real power losses. Particle swarm optimization and BAT algorithms are chosen as their behaviour is similar. VCPI index is used as a metric to calculate the voltage collapse scenario of the power system. The algorithm is tested on two benchmark power systems: IEEE 118 and the Indian UPSEB 75 bus system. Performance metrics are compared with the system without FACTS devices. Application of PSO and BAT algorithms to optimally locate the FACTS devices reduces the VCPI index and real power losses in the system.展开更多
The growth of wind energy penetration level in distribution system raises the concern about its impact on the operation of the power system, especially voltage stability and power loss. Among the major concerns, this ...The growth of wind energy penetration level in distribution system raises the concern about its impact on the operation of the power system, especially voltage stability and power loss. Among the major concerns, this paper studied the impact of connecting wind Turbine (WT) in radial distribution system with different penetration levels and different power factor (lead and lag) on power system voltage stability and power loss reduction. Load flow calculation was carried out using forward-backward sweep method. The analysis proceeds on 9- and 33-bus radial distribution systems. Results show that voltage stability enhancement and power loss reduction should be considered as WT installation objective.展开更多
An optimal preventive-corrective control model for static voltage stability under multiple N-1 contingencies considering the wind power uncertainty is established in this paper.The objective is to minimize the control...An optimal preventive-corrective control model for static voltage stability under multiple N-1 contingencies considering the wind power uncertainty is established in this paper.The objective is to minimize the control variable adjustment cost including the load shedding cost of each contingency.The chance constraints of the static voltage stability margins(SvSMs)in the normal operation state and after each N-1 contingency are included.The approximate functions between the probability density functions(PDFs)of SVSMs and load shedding quantity with respect to preventive control variables are obtained to transform the expectation of load shedding quantity and the SvSM chance constraints into deterministic expressions.An approximate sequential convex quadratically constrained quadratic programming iteration method is proposed to solve the optimal control model.In each iteration,the approximate expressions and range are determined by the generated data samples.Moreover,a fast approximation calculation method of second-order matrices is proposed.By the naive Bayes classifier,the most severe N-1 contingencies are selected to replace all the contingencies to be added to the optimization model to improve the computational efficiency.Case studies on the IEEE-39 bus system and an actual provincial power grid demonstrate the effectiveness and efficiency of the proposed method.展开更多
Calculation of static voltage stability margin(SVSM)of AC/DC power systems with lots of renewable energy sources(RESs)integration requires consideration of uncertain load growth and renewable energy generation output....Calculation of static voltage stability margin(SVSM)of AC/DC power systems with lots of renewable energy sources(RESs)integration requires consideration of uncertain load growth and renewable energy generation output.This paper presents a bi-level optimal power flow(BLOPF)model to identify the worst-case SVSM of an AC/DC power system with line commutation converter-based HVDC and multi-terminal voltage sourced converter-based HVDC transmission lines.Constraints of uncertain load growth’s hypercone model and control mode switching of DC converter stations are considered in the BLOPF model.Moreover,uncertain RES output fluctuations are described as intervals,and two three-level optimal power flow(TLOPF)models are established to identify interval bounds of the system worst-case SVSM.The two TLOPF models are both transformed into max–min bi-level optimization models according to independent characteristics of different uncertain variables.Then,transforming the inner level model into its dual form,max–min BLOPF models are simplified to single-level optimization models for direct solution.Calculation results on the modified IEEE-39 bus AC/DC case and an actual large-scale AC/DC case in China indicate correctness and efficiency of the proposed identification method.展开更多
This paper proposes a novel Multivariate Quotient-Difference(MQD)method to obtain the approximate analytical solution for AC power flow equations.Therefore,in the online environment,the power flow solutions covering d...This paper proposes a novel Multivariate Quotient-Difference(MQD)method to obtain the approximate analytical solution for AC power flow equations.Therefore,in the online environment,the power flow solutions covering different operating conditions can be directly obtained by plugging values into multiple symbolic variables,such that the power injections and consumptions of selected buses or areas can be independently adjusted.This method first derives a power flow solution through a Multivariate Power Series(MPS).Next,the MQD method is applied to transform the obtained MPS to a Multivariate Pad´e Approximants(MPA)to expand the Radius of Convergence(ROC),so that the accuracy of the derived analytical solution can be significantly increased.In addition,the hypersurface of the voltage stability boundary can be identified by an analytical formula obtained from the coefficients of MPA.This direct method for power flow solutions and voltage stability boundaries is fast for many online applications,since such analytical solutions can be derived offline and evaluated online by only plugging values into the symbolic variables according to the actual operating conditions.The proposed method is validated in detail on New England 39-bus and IEEE 118-bus systems with independent load variations in multi-regions.展开更多
Transient voltage stability analysis(TVSA)of power systems is one of the most computationally challenging tasks in dynamic security assessment.To reduce the complexity of TVSA,this paper proposes an improved expanding...Transient voltage stability analysis(TVSA)of power systems is one of the most computationally challenging tasks in dynamic security assessment.To reduce the complexity of TVSA,this paper proposes an improved expanding annular domain(improved EAD)algorithm to estimate the domain of attraction(DA)of power systems containing multiple induction motors(IMs),whose improvements are concerned with relaxing the restriction on critical value and simplifying iteration steps.The proposed algorithm can systematically construct Lyapunov function for lossy power systems with IMs and their slip constraints.First,the extended Lyapunov stability theory and sum of squares(SOS)programming are presented,which are powerful tools to construct Lyapunov function.Second,the internal node model of IM is developed by an analogy with that of a synchronous generator,and a multi-machine power system model by eliminating algebraic variables is derived.Then,an improved EAD algorithm with SOS programming is proposed to estimate the DA for a power system considering the slip constraint of IM.Finally,the superiority of our method is demonstrated on two modified IEEE test cases.Simulation results show that the proposed algorithm can provide a better estimated DA and critical clearing slip for power systems with multiple IMs.展开更多
The recently proposed ambient signal-based load modeling approach offers an important and effective idea to study the time-varying and distributed characteristics of power loads.Meanwhile,it also brings new problems.S...The recently proposed ambient signal-based load modeling approach offers an important and effective idea to study the time-varying and distributed characteristics of power loads.Meanwhile,it also brings new problems.Since the load model parameters of power loads can be obtained in real-time for each load bus,the numerous identified parameters make parameter application difficult.In order to obtain the parameters suitable for off-line applications,load model parameter selection(LMPS)is first introduced in this paper.Meanwhile,the convolution neural network(CNN)is adopted to achieve the selection purpose from the perspective of short-term voltage stability.To begin with,the field phasor measurement unit(PMU)data from China Southern Power Grid are obtained for load model parameter identification,and the identification results of different substations during different times indicate the necessity of LMPS.Meanwhile,the simulation case of Guangdong Power Grid shows the process of LMPS,and the results from the CNNbased LMPS confirm its effectiveness.展开更多
Augmenting the working voltage is an effective way to maximize the energy density of Ni-rich layered Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2)(NCM)to approach its theoretical capacity.However,NCM suffers from structural degra...Augmenting the working voltage is an effective way to maximize the energy density of Ni-rich layered Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2)(NCM)to approach its theoretical capacity.However,NCM suffers from structural degradation in deep delithiation state,which is often accompanied by severe surface lattice oxygen loss and transition metal dissolution,leading to restricted cycle life.Herein,a facile and effective surfacestrengthening strategy is proposed,in which Mn(OH)_(2)nanoshells are uniformly grown on the NCM surface as a Li~+capturer and then converted to thin spinel Li_(4)Mn_(5)O_(12)layers during subsequent hightemperature sintering.The resultant Li_(4)Mn_(5)O_(12)layers can enhance cathode-electrolyte interface electrochemical stability with inhibited electrolyte corrosion and accelerated Li~+kinetics.The theoretical calculations confirms that the Mn-O bonds formed at the interfaces can effectively decrease the oxygen activity,thereby further inhibiting the lattice oxygen release and structural degradation caused by the irreversible phase transition.Consequently,the Li_(4)Mn_(5)O_(12)-coated NCM displays high capacity retention of 80.3%and 94.9%at 1 C and 5 C compared to the pristine NCM(52.5%and 10.1%)after 200 cycles and can operate stably at 2.7-4.6 V and 60℃.The spinel Li_(4)Mn_(5)O_(12)-coating demonstrates an effective route to enhance the structural/electrochemical stability of NCM for next-generation advanced lithium-ion batteries.展开更多
With the increasing integration of wind farms and electric vehicles(EVs)in power systems,voltage stability is becoming more and more serious.Based on vehicle-to-grid(V2G),an efficient power plant model of EVs(E-EPP)wa...With the increasing integration of wind farms and electric vehicles(EVs)in power systems,voltage stability is becoming more and more serious.Based on vehicle-to-grid(V2G),an efficient power plant model of EVs(E-EPP)was developed to estimate EV charging load with available corresponding response capacity under different charging strategies.A preventive control strategy based on E-EPP was proposed to maintain the static voltage stability margin(VSM)of power system above a predefined security level.Two control modes were used including the disconnection of EV charging load(‘V1G’mode)and the discharge of stored battery energy back to power grid(‘V2G’mode).A modified IEEE 14-bus system with high penetration of wind power and EVs was used to verify the effectiveness of preventive control strategy.Simulation results showed that the proposed strategy can not only improve the static voltage stability of power system with considerable wind generation,but also guarantee the travelling comfort for EV owners.展开更多
The implementation of developing the wind power is an important way to achieve the low-carbon power system.However,the voltage stability issues caused by the random fluctuations of active power output and the irration...The implementation of developing the wind power is an important way to achieve the low-carbon power system.However,the voltage stability issues caused by the random fluctuations of active power output and the irrational regulations of reactive power compensation equipment have become the prominent problems of the regions where large-scale wind power integrated.In view of these problems,this paper proposed an optimal reactive power dispatch(ORPD)strategy of wind power plants cluster(WPPC)considering static voltage stability for lowcarbon power system.The control model of the ORPD strategy was built according to the wind power prediction,the present operation information and the historical operation information.By utilizing the automatic voltage control capability of wind power plants and central substations,the ORPD strategy can achieve differentiated management between the discrete devices and the dynamic devices of the WPPC.Simulation results of an actual WPPC in North China show that the ORPD strategy can improve the voltage control performance of the pilot nodes and coordinate the operation between discrete devices and the dynamic devices,thus maintaining the static voltage stability as well.展开更多
This paper develops a fully data-driven,missingdata tolerant method for post-fault short-term voltage stability(STVS)assessment of power systems against the incomplete PMU measurements.The super-resolution perception(...This paper develops a fully data-driven,missingdata tolerant method for post-fault short-term voltage stability(STVS)assessment of power systems against the incomplete PMU measurements.The super-resolution perception(SRP),based on a deep residual learning convolutional neural network,is employed to cope with the missing PMU measurements.The incremental broad learning(BL)is used to rapidly update the model to maintain and enhance the online application performance.Being different from the state-of-the-art methods,the proposed method is fully data-driven and can fill up missing data under any PMU placement information loss and network topology change scenario.Simulation results demonstrate that the proposed method has the best performance in terms of STVS assessment accuracy and missing-data tolerance among the existing methods on the benchmark testing system.展开更多
基金the State Grid Shanxi Electric Power Company Science and Technology Project“Smart distribution network with a high proportion of distributed wind storage adaptability assessment and improvement strategy research”(520530230024).
文摘With the increasing penetration of renewable energy in power systems,grid structures and operational paradigms are undergoing profound transformations.When subjected to disturbances,the interaction between power electronic devices and dynamic loads introduces strongly nonlinear dynamic characteristics in grid voltage responses,posing significant threats to system security and stability.To achieve reliable short-term voltage stability assessment under large-scale renewable integration,this paper innovatively proposes a response-driven online assessment method based on energy function theory.First,energy modeling of system components is performed based on energy function theory,followed by analysis of energy interaction mechanisms during voltage instability.To address the challenge of traditional energy functions in online applications,a convolutional neural network-long short-term memory(CNNLSTM)hybrid artificial Intelligence approach is introduced.By quantifying the contribution of each energy component to voltage stability,key energy terms are identified.The measurable electrical quantities corresponding to these key energies serve as inputs,while the energy at the voltage unstable equilibrium point(UEP)obtained from offline simulations is used as both the energy threshold and the output of the artificial intelligence model,enabling the construction of an artificial intelligence model for energy threshold prediction.The measurable electrical quantities corresponding to these key energies serve as inputs,while the energy at the unstable equilibrium point(UEP)obtained from offline simulations acts as the output,enabling the construction of an artificial intelligence model for energy threshold prediction.Real-time response data are fed into the model to predict the system's instantaneous energy threshold,which is then compared with the transient energy at fault clearance to evaluate stability.Validation on both a 3-machine,10-bus system and the New England 10-machine,39-bus system confirms the method's adaptability and accuracy.The simulation results demonstrate that the proposed short-term voltage stability assessment model outperforms other methods in both accuracy and computational efficiency.
基金Natural Science Research(Department of Education)Project of Higher Education Institutions in Guangdong Province(Grant No.2018KQNCX063)Applied Basic Research Fund of Guangdong Province(Grant No.2024B1515020071)+1 种基金National Natural Science Foundation of China(Grant Nos.52371217 and 52150410411)Guangdong Provincial Science and Technology Plan Project(Grant No.2023A0505020009)。
文摘Li-rich Mn-based oxides(LRMOs)hold great promise as next-generation cathode materials for high-energy Li-ion batteries because of their low cost and high capacity.Nevertheless,the practical application of LRMOs is impeded by their low initial Coulombic efficiency and rapid voltage decay.Herein,a V-doped layered-spinel coherent layer is constructed on the surface of a Co-free LRMO through a simple treatment with NH_(4)VO_(3).The layered-spinel coherent layer with 3D ion channels enhanced Li+diffusion efficiency,mitigates surface-inter-face reactions and suppresses irreversible oxygen release.Notably,V-doping significantly reduces the Bader charge of oxygen atoms,thereby impeding excessive oxidation of oxygen ions and further enhancing the stability of O-redox.The modified LRMO exhibites a remarkable initial Coulombic efficiency of 91.6%,signifi-cantly surpassing that of the original LRMO(74.4%).Furthermore,the treated sample showes an impressive capacity retention rate of 91.9%after 200 cycles,accompanied by a voltage decay of merely 0.47 mV per cycle.The proposed treatment approach is straightforward and significantly improves the initial Coulombic efficiency,voltage stability,and capacity stability of LRMO cathode materials,thus holding considerable promise for the development of high-energy Li-ion batteries.
文摘The traditional voltage stability analysis method is mostly based on the deterministic mode1.and ignores the uncertainties of bus loads,power supplies,changes in network configuration and so on.However,the great expansion of renewable power generations such as wind and solar energy in a power system has increased their uncertainty,and仃aditional techniques are limited in capturing their variable behavior.This leads to greater needs of new techniques and methodologies to properly quan tify the voltage stability of power systems.
基金financially supported by the Fundamental Research Foundation for University of Heilongjiang Province(No.2018-KYYWF-1628)the National Natural Science Foundation of China(Nos.51471057 and 51677033)。
文摘Donor-acceptor co-doped rutile TiO_(2) ceramics with colossal permittivity(CP)have been extensively investigated in recent years due to their potential applications in modern microelectronics.In addition to CP and low dielectric loss,voltage stability is an essential property for CP materials utilized in high-power and high-energy density storage devices.Unfortunately,the voltage stability of CP materials based on codoped TiO_(2) does not catch enough attention.Here,we propose a strategy to enhance the voltage stability of co-doped TiO_(2),where different ionic defect clusters are formed by two acceptor ions with different radii to localize free carriers and result in high performance CP materials.The(Ta+Al+La)co-doped TiO_(2) ceramic with suitable La/Al ratio exhibits colossal permittivity with excellent temperature stability as well as outstanding dc bias stability.The density functional theory analysis suggests that La^(3+)Al^(3+)V_(0)Ti^(3+)defect clusters and Ta^(5+)-Al^(3+)pairs are responsible for the excellent dielectric properties in(Ta+Al+La)co-doped TiO_(2).The results and mechanisms presented in this work open up a feasible route to design high performance CP materials via defect engineering.
基金Sponsored by the Scientific and Technological Project of Heilongjiang Province(Grant No.GD07A304)
文摘The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonlinear functions having multiple local minima and nonlinear and discontinuous constraints. To deal with the problem,quantum particle swarm optimization (QPSO) is firstly introduced in this paper,and according to QPSO,chaotic quantum particle swarm optimization (CQPSO) is presented,which makes use of the randomness,regularity and ergodicity of chaotic variables to improve the quantum particle swarm optimization algorithm. When the swarm is trapped in local minima,a smaller searching space chaos optimization is used to guide the swarm jumping out the local minima. So it can avoid the premature phenomenon and to trap in a local minima of QPSO. The feasibility and efficiency of the proposed algorithm are verified by the results of calculation and simulation for IEEE 14-buses and IEEE 30-buses systems.
文摘With the increasing development of wind power,the scale of wind farms and unit capacity of wind turbines are getting larger and larger,and the impact of wind integration on power systems cannot be ignored.However,in most cases,the areas with a plenty of wind resources do not have strong grid structures.Furthermore,the characteristics of wind power dictate that wind turbines need to absorb reactive power during operation.Because of the strong correlation between voltage stability and systems' reactive power,the impacts of wind integration on voltage stability has become an important issue.Based on the power system simulation software DIgSILENT and combined analysis of actual practice,this paper investigates the impacts of two types of wind farms on voltage stability:namely a type of wind farms which are constituted by constant speed wind turbines based on common induction generators(IG) and another type of wind farms which are constituted by VSCF wind turbines based on doubly-fed induction generators(DFIG).Through investigation the critical fault clearing time is presented for different outputs of wind farms.Moreover,the impacts of static var compensator(SVC) and static synchronous compensator(STATCOM) on transient voltage stability in IG-based wind farms are studied to improve the security and stability of the Jiangsu power grid after the integration of large scale wind power.
基金National Natural Science Foundation of China(No.61663019)
文摘This paper studies on the change mechanisms of the voltage stability caused by the grid connection of front-end speed-controlled wind turbines(FSCWT)integrating into power system.First of all,the differential algebraic equations describing the dynamic characteristics of wind turbines are illustrated.Then,under the guidance of IEEE3 node system model,the influence of the angular velocity of wind turbines,the reactive power and the active power at load bus on the voltage stability of grid-connection has been analyzed by using bifurcation theory.Finally,the method of linear-state feedback control has been applied to the original system in accordance with the bifurcation phenomenon of grid-connected voltage caused by the increase in the active power at load bus.Research shows that voltage at the grid-connected point would be changed with the fluctuation of turbines angular velocity.And increasing its reactive power can enhance voltage at the grid-connected point;problem of bifurcation at the grid-connected point can be delayed when increasing the gain k s of feedback controller within a certain range.
文摘This paper presents a newly developed proximity indicator for voltage stability assessment which can be used to predict critical real system load and voltages at various load buses at critical loading point.The proximity indicator varies almost parabolic with total real load demand and reaches orthogonally to real load axis.This relation has been utilized to predict critical loading point.It has been shown that two operating points are needed for estimating critical point and proper selection of operating points and variation of proximity indicator near collapse point highly affect the accuracy of estimation.Simulation is based on load flow equations and system real and reactive loadings have been increased in proportion with base case scenario for IEEE 14 and IEEE 25 bus test systems to demonstrate the behaviour of proposed proximity indicator.CPF has been used as benchmark to check the accuracy of estimation.
基金National Natural Science Foundation of China(5076700350867004)Autonomous university research projects(XJEDU2007105)
文摘The static voltage stability of the power system integrating wind farms adopting different kinds of wind turbines is analyzed. Through the simulation of one certain local power grid in Xinjiang Uygur Autonomous Region, the PV curves at the point of common coupling (PCC), key buses and important substations are plotted; the variation of voltage as well as the limit and margin of static stability are analyzed. It is resulted from the simulation that the limit of static voltage at weak nodes is lower, and the static voltage of the power system with wind farms adopting doubly-fed induction generators (DFIG) is more stable than that with wind farms adopting common asynchronous generators.
文摘Power system operations can be optimized using power electronics based FACTS devices. The location of these devices at appropriate transmission line plays a major role in their performance. In this paper, two bio-inspired algorithms are used to optimally locate two FACTS devices: UPFC and STATCOM, so as to reduce the voltage collapse and real power losses. Particle swarm optimization and BAT algorithms are chosen as their behaviour is similar. VCPI index is used as a metric to calculate the voltage collapse scenario of the power system. The algorithm is tested on two benchmark power systems: IEEE 118 and the Indian UPSEB 75 bus system. Performance metrics are compared with the system without FACTS devices. Application of PSO and BAT algorithms to optimally locate the FACTS devices reduces the VCPI index and real power losses in the system.
文摘The growth of wind energy penetration level in distribution system raises the concern about its impact on the operation of the power system, especially voltage stability and power loss. Among the major concerns, this paper studied the impact of connecting wind Turbine (WT) in radial distribution system with different penetration levels and different power factor (lead and lag) on power system voltage stability and power loss reduction. Load flow calculation was carried out using forward-backward sweep method. The analysis proceeds on 9- and 33-bus radial distribution systems. Results show that voltage stability enhancement and power loss reduction should be considered as WT installation objective.
基金supported by the National Natural Science Foundation of China under Grant 51977080the Natural Science Foundation of Guangdong Province(2023A1515240075).
文摘An optimal preventive-corrective control model for static voltage stability under multiple N-1 contingencies considering the wind power uncertainty is established in this paper.The objective is to minimize the control variable adjustment cost including the load shedding cost of each contingency.The chance constraints of the static voltage stability margins(SvSMs)in the normal operation state and after each N-1 contingency are included.The approximate functions between the probability density functions(PDFs)of SVSMs and load shedding quantity with respect to preventive control variables are obtained to transform the expectation of load shedding quantity and the SvSM chance constraints into deterministic expressions.An approximate sequential convex quadratically constrained quadratic programming iteration method is proposed to solve the optimal control model.In each iteration,the approximate expressions and range are determined by the generated data samples.Moreover,a fast approximation calculation method of second-order matrices is proposed.By the naive Bayes classifier,the most severe N-1 contingencies are selected to replace all the contingencies to be added to the optimization model to improve the computational efficiency.Case studies on the IEEE-39 bus system and an actual provincial power grid demonstrate the effectiveness and efficiency of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant No.51977080)the Natural Science Foundation of Guangdong Province(Grant No.2022A1515010332)supported by the U.S.National Science Foundation(Grant#2124849).
文摘Calculation of static voltage stability margin(SVSM)of AC/DC power systems with lots of renewable energy sources(RESs)integration requires consideration of uncertain load growth and renewable energy generation output.This paper presents a bi-level optimal power flow(BLOPF)model to identify the worst-case SVSM of an AC/DC power system with line commutation converter-based HVDC and multi-terminal voltage sourced converter-based HVDC transmission lines.Constraints of uncertain load growth’s hypercone model and control mode switching of DC converter stations are considered in the BLOPF model.Moreover,uncertain RES output fluctuations are described as intervals,and two three-level optimal power flow(TLOPF)models are established to identify interval bounds of the system worst-case SVSM.The two TLOPF models are both transformed into max–min bi-level optimization models according to independent characteristics of different uncertain variables.Then,transforming the inner level model into its dual form,max–min BLOPF models are simplified to single-level optimization models for direct solution.Calculation results on the modified IEEE-39 bus AC/DC case and an actual large-scale AC/DC case in China indicate correctness and efficiency of the proposed identification method.
基金supported by the National Natural Science Foundation of China under Project 52007133 and U22B20100。
文摘This paper proposes a novel Multivariate Quotient-Difference(MQD)method to obtain the approximate analytical solution for AC power flow equations.Therefore,in the online environment,the power flow solutions covering different operating conditions can be directly obtained by plugging values into multiple symbolic variables,such that the power injections and consumptions of selected buses or areas can be independently adjusted.This method first derives a power flow solution through a Multivariate Power Series(MPS).Next,the MQD method is applied to transform the obtained MPS to a Multivariate Pad´e Approximants(MPA)to expand the Radius of Convergence(ROC),so that the accuracy of the derived analytical solution can be significantly increased.In addition,the hypersurface of the voltage stability boundary can be identified by an analytical formula obtained from the coefficients of MPA.This direct method for power flow solutions and voltage stability boundaries is fast for many online applications,since such analytical solutions can be derived offline and evaluated online by only plugging values into the symbolic variables according to the actual operating conditions.The proposed method is validated in detail on New England 39-bus and IEEE 118-bus systems with independent load variations in multi-regions.
基金supported by the Department of Science,and Technology of Guangdong Province under Grant No.2023 A1515240019。
文摘Transient voltage stability analysis(TVSA)of power systems is one of the most computationally challenging tasks in dynamic security assessment.To reduce the complexity of TVSA,this paper proposes an improved expanding annular domain(improved EAD)algorithm to estimate the domain of attraction(DA)of power systems containing multiple induction motors(IMs),whose improvements are concerned with relaxing the restriction on critical value and simplifying iteration steps.The proposed algorithm can systematically construct Lyapunov function for lossy power systems with IMs and their slip constraints.First,the extended Lyapunov stability theory and sum of squares(SOS)programming are presented,which are powerful tools to construct Lyapunov function.Second,the internal node model of IM is developed by an analogy with that of a synchronous generator,and a multi-machine power system model by eliminating algebraic variables is derived.Then,an improved EAD algorithm with SOS programming is proposed to estimate the DA for a power system considering the slip constraint of IM.Finally,the superiority of our method is demonstrated on two modified IEEE test cases.Simulation results show that the proposed algorithm can provide a better estimated DA and critical clearing slip for power systems with multiple IMs.
基金supported by the National Natural Science Foundation of China(U2066601,U1766214).
文摘The recently proposed ambient signal-based load modeling approach offers an important and effective idea to study the time-varying and distributed characteristics of power loads.Meanwhile,it also brings new problems.Since the load model parameters of power loads can be obtained in real-time for each load bus,the numerous identified parameters make parameter application difficult.In order to obtain the parameters suitable for off-line applications,load model parameter selection(LMPS)is first introduced in this paper.Meanwhile,the convolution neural network(CNN)is adopted to achieve the selection purpose from the perspective of short-term voltage stability.To begin with,the field phasor measurement unit(PMU)data from China Southern Power Grid are obtained for load model parameter identification,and the identification results of different substations during different times indicate the necessity of LMPS.Meanwhile,the simulation case of Guangdong Power Grid shows the process of LMPS,and the results from the CNNbased LMPS confirm its effectiveness.
基金financial support from the Key Research and Development Project in Shaanxi Province(2023-YBGY-446)the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2022SX-TD003)+1 种基金the Natural Science Basic Research Program of Shaanxi(No.2024JC-YBQN-0108)the Key Laboratory of Interface Science and Engineering in Advanced Materials,Ministry of Education(KLISEAM202202)。
文摘Augmenting the working voltage is an effective way to maximize the energy density of Ni-rich layered Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2)(NCM)to approach its theoretical capacity.However,NCM suffers from structural degradation in deep delithiation state,which is often accompanied by severe surface lattice oxygen loss and transition metal dissolution,leading to restricted cycle life.Herein,a facile and effective surfacestrengthening strategy is proposed,in which Mn(OH)_(2)nanoshells are uniformly grown on the NCM surface as a Li~+capturer and then converted to thin spinel Li_(4)Mn_(5)O_(12)layers during subsequent hightemperature sintering.The resultant Li_(4)Mn_(5)O_(12)layers can enhance cathode-electrolyte interface electrochemical stability with inhibited electrolyte corrosion and accelerated Li~+kinetics.The theoretical calculations confirms that the Mn-O bonds formed at the interfaces can effectively decrease the oxygen activity,thereby further inhibiting the lattice oxygen release and structural degradation caused by the irreversible phase transition.Consequently,the Li_(4)Mn_(5)O_(12)-coated NCM displays high capacity retention of 80.3%and 94.9%at 1 C and 5 C compared to the pristine NCM(52.5%and 10.1%)after 200 cycles and can operate stably at 2.7-4.6 V and 60℃.The spinel Li_(4)Mn_(5)O_(12)-coating demonstrates an effective route to enhance the structural/electrochemical stability of NCM for next-generation advanced lithium-ion batteries.
基金This work was supported in part by the National Natural Science Foundation of China(collaborating with EPSRC of UK)(Nos.51361130152 and EP/L001039/1)the National Science and Technology Support Program of China(No.2013BAA01B03)Research on Reactive Power Control and Comprehensive Evaluation Technique of Large Scale Integration of Wind/Photovoltaic Power Generation(No.NY71-14-035).
文摘With the increasing integration of wind farms and electric vehicles(EVs)in power systems,voltage stability is becoming more and more serious.Based on vehicle-to-grid(V2G),an efficient power plant model of EVs(E-EPP)was developed to estimate EV charging load with available corresponding response capacity under different charging strategies.A preventive control strategy based on E-EPP was proposed to maintain the static voltage stability margin(VSM)of power system above a predefined security level.Two control modes were used including the disconnection of EV charging load(‘V1G’mode)and the discharge of stored battery energy back to power grid(‘V2G’mode).A modified IEEE 14-bus system with high penetration of wind power and EVs was used to verify the effectiveness of preventive control strategy.Simulation results showed that the proposed strategy can not only improve the static voltage stability of power system with considerable wind generation,but also guarantee the travelling comfort for EV owners.
基金This work was supported by the National Natural Science Foundation of China(No.51207145)the Science and Technology Project of State Grid Corporation of China(No.NY71-14-035).
文摘The implementation of developing the wind power is an important way to achieve the low-carbon power system.However,the voltage stability issues caused by the random fluctuations of active power output and the irrational regulations of reactive power compensation equipment have become the prominent problems of the regions where large-scale wind power integrated.In view of these problems,this paper proposed an optimal reactive power dispatch(ORPD)strategy of wind power plants cluster(WPPC)considering static voltage stability for lowcarbon power system.The control model of the ORPD strategy was built according to the wind power prediction,the present operation information and the historical operation information.By utilizing the automatic voltage control capability of wind power plants and central substations,the ORPD strategy can achieve differentiated management between the discrete devices and the dynamic devices of the WPPC.Simulation results of an actual WPPC in North China show that the ORPD strategy can improve the voltage control performance of the pilot nodes and coordinate the operation between discrete devices and the dynamic devices,thus maintaining the static voltage stability as well.
基金The work was supported in part by National Natural Science Foundation of China(51807009,71931003,72061147004).
文摘This paper develops a fully data-driven,missingdata tolerant method for post-fault short-term voltage stability(STVS)assessment of power systems against the incomplete PMU measurements.The super-resolution perception(SRP),based on a deep residual learning convolutional neural network,is employed to cope with the missing PMU measurements.The incremental broad learning(BL)is used to rapidly update the model to maintain and enhance the online application performance.Being different from the state-of-the-art methods,the proposed method is fully data-driven and can fill up missing data under any PMU placement information loss and network topology change scenario.Simulation results demonstrate that the proposed method has the best performance in terms of STVS assessment accuracy and missing-data tolerance among the existing methods on the benchmark testing system.