Junction temperature of alternating current light-emitting-diode (AC-LED) has a significant effect on its stable light output and lifetime. The threshold voltage measurement is employed to characterize the junction ...Junction temperature of alternating current light-emitting-diode (AC-LED) has a significant effect on its stable light output and lifetime. The threshold voltage measurement is employed to characterize the junction temperature of AC-LED, due to its excellent merits in high efficiency and accuracy. The threshold voltage is measured when the driving current of an AC-LED rises to a reference on-set value from the zero-crossing node. Based on multiple measurements of threshold voltage at different temperatures, a linear relationship was uncovered between the threshold voltage and the junction temperature of AC- LED with the correlating factor of temperature sensitive parameter (TSP). Thereby, we can calculate the junction temperature with the TSP and threshold voltage once the AC-LED stays at thermal equilibrium state. The accuracy of the proposed junction temperature measurement technique was found to be +3.2℃ for the reference current of 1 mA. It is concluded that the method of threshold voltage is accurate and simple to implement, making it highly suitable for measuring the junction temperature of AC-LED in industry.展开更多
The alternative energy resources, like solar, are always complementary due to environmental changes. Energy generation with the sources such as solar and wind is gaining importance and of that photovoltaic conversion ...The alternative energy resources, like solar, are always complementary due to environmental changes. Energy generation with the sources such as solar and wind is gaining importance and of that photovoltaic conversion is the main focus of researches due to its promising potential as the electrical source. This paper presents the constant voltage method of control where the output of the converter is maintained constant irrespective of the variations in the irradiance with the high step-up isolated efficient single switch DC-DC converter for the solar PV systems. Constant voltage method of control uses the array of photovoltaic systems as its energy source. The output of the Solar PV systems is nonlinear and has its dependency on temperature and irradiance by which the panel voltage and current varies with the variation in irradiance. Constant voltage control method always operates in such a way that the converter voltage is tried to be maintained constantly to the reference voltage which is set by the user. The system used here utilizes high step single switch isolated DC-DC converter and monitors the voltage continuously by varying the duty cycle to maintain the converter voltage always constant. As a way of improving the performance, both the open and closed loop analysis is done where the closed loop analysis uses the PI controller for its performance. The model is implemented in MATLAB and it accepts the irradiance as the input and outputs the constant voltage from the converter and the feasibility of the proposed converter topology is confirmed with experimental results of the prototype model.展开更多
Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application o...Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application of PMN-PT in high-power settings is rapidly evolving,material parameters are typically tested under low signal conditions(1 V),and effects of different PT(PbTiO_(3))contents on the performance of PMN-PT single crystals under high-power conditions remain unclear.This study developed a comprehensive high-power testing platform using the constant voltage method to evaluate performance of PMN-PT single crystals with different PT contents under high-power voltage stimulation.Using crystals sized at 10 mm×3 mm×0.5 mm as an example,this research explored changes in material parameters.The results exhibit that while trend of the parameter changes under high-power excitation was consistent across different PT contents,degree of the change varied significantly.For instance,a PMN-PT single crystal with 26%(in mol)PT content exhibited a 25%increase in the piezoelectric coefficient d_(31),a 13%increase in the elastic compliance coefficient s_(11)^(E),a 17%increase in the electromechanical coupling coefficient k_(31),and a 73%decrease in the mechanical quality factor Q_(m) when the power reached 7.90 W.As the PT content increased,the PMN-PT materials became more susceptible to temperature influences,significantly reducing the power tolerance and more readily reaching the depolarization temperatures.This led to loss of piezoelectric performance.Based on these findings,a clearer understanding of impact of PT content on performance of PMN-PT single crystals under high-power applications has been established,providing reliable data to support design of sensors or transducers using PMN-PT as the sensitive element.展开更多
The effect of line voltage drop is considered larger on loads, especially on asynchronous motor, transformers and other non-linear load parameters in power system of large ships. A novel power flow method based on imp...The effect of line voltage drop is considered larger on loads, especially on asynchronous motor, transformers and other non-linear load parameters in power system of large ships. A novel power flow method based on improved node voltage method is proposed, and a typical ship power system, which has 2 power stations and 10 nodes, with closed-loop design but open-loop operation, is taken as an example. Simulation results show that the improved power flow calculation method has achieved higher accuracy and better convergence.展开更多
According to the structural characteristics of hazardous waste landfill and the leakage current model of high voltage DC Landfill leakage detection, a sealed model is established detail. The detection layer of the haz...According to the structural characteristics of hazardous waste landfill and the leakage current model of high voltage DC Landfill leakage detection, a sealed model is established detail. The detection layer of the hazardous waste landfill is considered as a sealed assumed that the source current flows through the leak entirely. The leak is regard and analyzed in space and it is ed as a positive current resource + I located at the current entrance or a negative resource - I located at the current exit, which depends on the placement of the current supply. The electrical potential of an arbitrary in detection layer satisfies Poisson equation. The boundary condition is regarded as a natural bound- ary condition for the high resistivity of high density polyethylene (HDPE) membrane. Based on which a numerical calculation method is developed. Satisfactory agreement between experimental da- ta and simulated data validates the analysis. Parametric studies show that a larger horizontal distance between the power supply electrode and leak and a smaller distance between the detector electrodes and the detected liner are helpful to leak location. More parametric curves show that parameters leaks can be detected effectively with optimum selection of field survey.展开更多
The effects of green high performance concrete (GHPC) admixture on the anti-chloride permeability and anti- chloride corrodibility of concrete are studied by a series of experiments designed on the basis of the diffus...The effects of green high performance concrete (GHPC) admixture on the anti-chloride permeability and anti- chloride corrodibility of concrete are studied by a series of experiments designed on the basis of the diffusion principle and electro-chemical principle. The GHPC admixture consists of fly ash, gangue, slag, red mud, etc., of which the mass fraction of industrial residues is over 96 %. The anti-permeabilities and anti-corrodibilities of the tested GHPC and normal concrete (NC) are evaluated by the Diffusion Coefficients of chloride which was obtained by measuring the concentration of chloride in the tested systems by the voltage difference method. It is found that the adoption of GHPC admixture greatly improves the anti-chloride permeability and anti-chloride corrodibility by modifying the inner structure and contracting the porosity of concrete to the reduce considerably the diffusion rate of chloride. The admixture is desirable regarding its engineering performances as well as economical and environmental interests.展开更多
In recent years,the penetration of renewable resources into AC power systems has increased tremendously,creating a significantly impact on the latter’s operations and stability.In this respect,it is also important to...In recent years,the penetration of renewable resources into AC power systems has increased tremendously,creating a significantly impact on the latter’s operations and stability.In this respect,it is also important to gain a basic analytical understanding of such impact on the steady-state stability of power systems with electrically weak AC/DC interconnections,but such works are not very evident in the literature.Therefore,a classical analytic model of the single and multi-infeed HVDC system which now incorporates renewable resources is proposed.Then the well-established concept of voltage sensitivity of the AC/DC interconnection is applied to analyze the impact of the renewable resources on the steady-state stability of these composite system models,as well as on the influence of system conditions and parameters.This impact is also compared with that arising from other types of shunt devices alternatively connected at the same AC/DC interconnection,therefore their relative beneficial or negative impacts will also be benchmarked.展开更多
Aiming at resolving the limitation of the speed regulation range of sensorless control technology,a new composite sensorless control strategy is proposed to realize a control method for a permanent magnet synchronous ...Aiming at resolving the limitation of the speed regulation range of sensorless control technology,a new composite sensorless control strategy is proposed to realize a control method for a permanent magnet synchronous motor(PMSM)in full speed range.In the medium-and high-speed range,the improved new sliding mode observer method is used to estimate the motor speed and rotor position information.In the zero and low speed range,in order to avoid the defects of the sliding mode method,the rotating high-frequency voltage signal injection method is used.When switching between low,medium,and high speed,the fuzzy control algorithm is adopted to achieve smooth transitions.The simulation experiment results show that the hybrid mode combining the sliding mode observer and rotating high-frequency voltage injection methods,can effectively reduce the jitter in the algorithm switching process,and realize the smooth control of a PMSM in full speed range.展开更多
UHVDC converter valves during operation may experience overvoltage,which come from the AC or DC systems to which they are connected.Therefore,building an equivalent circuit model(ECM)for the converter valve to analyze...UHVDC converter valves during operation may experience overvoltage,which come from the AC or DC systems to which they are connected.Therefore,building an equivalent circuit model(ECM)for the converter valve to analyze the interlayer transient voltage distribution characteristics has important engineering significance for safe and reasonable voltage equalization methods and improving the stability of the DC system.This paper proposes a two-port equivalent circuit model for ±1100 kV converter valve based on the structure of the valve and parameter extraction methods presented.In terms of lumped parameters,integrated ECMs for valve layers are built through impedance-frequency characteristic analysis;in terms of parasitic capacitance parameters,port equivalent parasitic capacitance parameters are obtained by terminal capacitance method and iterative equivalence methods proposed in this paper.By combining integrated ECMs of valve layers and port equivalent parasitic capacitances,the two-port ECM is obtained.Simulations are carried out to test the effectiveness of the twoport ECM.Using the ECM,the voltage transmission characteristics and their influencing factors are analyzed,depending on which corresponding voltage equalization method is proposed in this paper,and the effect of this method is verified through simulation.展开更多
文摘Junction temperature of alternating current light-emitting-diode (AC-LED) has a significant effect on its stable light output and lifetime. The threshold voltage measurement is employed to characterize the junction temperature of AC-LED, due to its excellent merits in high efficiency and accuracy. The threshold voltage is measured when the driving current of an AC-LED rises to a reference on-set value from the zero-crossing node. Based on multiple measurements of threshold voltage at different temperatures, a linear relationship was uncovered between the threshold voltage and the junction temperature of AC- LED with the correlating factor of temperature sensitive parameter (TSP). Thereby, we can calculate the junction temperature with the TSP and threshold voltage once the AC-LED stays at thermal equilibrium state. The accuracy of the proposed junction temperature measurement technique was found to be +3.2℃ for the reference current of 1 mA. It is concluded that the method of threshold voltage is accurate and simple to implement, making it highly suitable for measuring the junction temperature of AC-LED in industry.
文摘The alternative energy resources, like solar, are always complementary due to environmental changes. Energy generation with the sources such as solar and wind is gaining importance and of that photovoltaic conversion is the main focus of researches due to its promising potential as the electrical source. This paper presents the constant voltage method of control where the output of the converter is maintained constant irrespective of the variations in the irradiance with the high step-up isolated efficient single switch DC-DC converter for the solar PV systems. Constant voltage method of control uses the array of photovoltaic systems as its energy source. The output of the Solar PV systems is nonlinear and has its dependency on temperature and irradiance by which the panel voltage and current varies with the variation in irradiance. Constant voltage control method always operates in such a way that the converter voltage is tried to be maintained constantly to the reference voltage which is set by the user. The system used here utilizes high step single switch isolated DC-DC converter and monitors the voltage continuously by varying the duty cycle to maintain the converter voltage always constant. As a way of improving the performance, both the open and closed loop analysis is done where the closed loop analysis uses the PI controller for its performance. The model is implemented in MATLAB and it accepts the irradiance as the input and outputs the constant voltage from the converter and the feasibility of the proposed converter topology is confirmed with experimental results of the prototype model.
基金Research and Development Project on Voltage Sensors by China Southern Power Grid Digital Research Institute(210000KK52220017)。
文摘Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application of PMN-PT in high-power settings is rapidly evolving,material parameters are typically tested under low signal conditions(1 V),and effects of different PT(PbTiO_(3))contents on the performance of PMN-PT single crystals under high-power conditions remain unclear.This study developed a comprehensive high-power testing platform using the constant voltage method to evaluate performance of PMN-PT single crystals with different PT contents under high-power voltage stimulation.Using crystals sized at 10 mm×3 mm×0.5 mm as an example,this research explored changes in material parameters.The results exhibit that while trend of the parameter changes under high-power excitation was consistent across different PT contents,degree of the change varied significantly.For instance,a PMN-PT single crystal with 26%(in mol)PT content exhibited a 25%increase in the piezoelectric coefficient d_(31),a 13%increase in the elastic compliance coefficient s_(11)^(E),a 17%increase in the electromechanical coupling coefficient k_(31),and a 73%decrease in the mechanical quality factor Q_(m) when the power reached 7.90 W.As the PT content increased,the PMN-PT materials became more susceptible to temperature influences,significantly reducing the power tolerance and more readily reaching the depolarization temperatures.This led to loss of piezoelectric performance.Based on these findings,a clearer understanding of impact of PT content on performance of PMN-PT single crystals under high-power applications has been established,providing reliable data to support design of sensors or transducers using PMN-PT as the sensitive element.
基金Supported by the National Natural Science Foundation under Grant No. 60704004
文摘The effect of line voltage drop is considered larger on loads, especially on asynchronous motor, transformers and other non-linear load parameters in power system of large ships. A novel power flow method based on improved node voltage method is proposed, and a typical ship power system, which has 2 power stations and 10 nodes, with closed-loop design but open-loop operation, is taken as an example. Simulation results show that the improved power flow calculation method has achieved higher accuracy and better convergence.
基金Supported by the National Basic Research Development Program of China(No.2010CB428506)the National High Technology Research and Development Program(No.2007AA061303)Beijing Higher Education Young Elite Teacher Project(YETP1756)
文摘According to the structural characteristics of hazardous waste landfill and the leakage current model of high voltage DC Landfill leakage detection, a sealed model is established detail. The detection layer of the hazardous waste landfill is considered as a sealed assumed that the source current flows through the leak entirely. The leak is regard and analyzed in space and it is ed as a positive current resource + I located at the current entrance or a negative resource - I located at the current exit, which depends on the placement of the current supply. The electrical potential of an arbitrary in detection layer satisfies Poisson equation. The boundary condition is regarded as a natural bound- ary condition for the high resistivity of high density polyethylene (HDPE) membrane. Based on which a numerical calculation method is developed. Satisfactory agreement between experimental da- ta and simulated data validates the analysis. Parametric studies show that a larger horizontal distance between the power supply electrode and leak and a smaller distance between the detector electrodes and the detected liner are helpful to leak location. More parametric curves show that parameters leaks can be detected effectively with optimum selection of field survey.
文摘The effects of green high performance concrete (GHPC) admixture on the anti-chloride permeability and anti- chloride corrodibility of concrete are studied by a series of experiments designed on the basis of the diffusion principle and electro-chemical principle. The GHPC admixture consists of fly ash, gangue, slag, red mud, etc., of which the mass fraction of industrial residues is over 96 %. The anti-permeabilities and anti-corrodibilities of the tested GHPC and normal concrete (NC) are evaluated by the Diffusion Coefficients of chloride which was obtained by measuring the concentration of chloride in the tested systems by the voltage difference method. It is found that the adoption of GHPC admixture greatly improves the anti-chloride permeability and anti-chloride corrodibility by modifying the inner structure and contracting the porosity of concrete to the reduce considerably the diffusion rate of chloride. The admixture is desirable regarding its engineering performances as well as economical and environmental interests.
文摘In recent years,the penetration of renewable resources into AC power systems has increased tremendously,creating a significantly impact on the latter’s operations and stability.In this respect,it is also important to gain a basic analytical understanding of such impact on the steady-state stability of power systems with electrically weak AC/DC interconnections,but such works are not very evident in the literature.Therefore,a classical analytic model of the single and multi-infeed HVDC system which now incorporates renewable resources is proposed.Then the well-established concept of voltage sensitivity of the AC/DC interconnection is applied to analyze the impact of the renewable resources on the steady-state stability of these composite system models,as well as on the influence of system conditions and parameters.This impact is also compared with that arising from other types of shunt devices alternatively connected at the same AC/DC interconnection,therefore their relative beneficial or negative impacts will also be benchmarked.
基金Supported by the National Natural Science Foundation of China(51907061)Natural Science Foundation of Hunan Province(2018JJ2100,2019JJ50119).
文摘Aiming at resolving the limitation of the speed regulation range of sensorless control technology,a new composite sensorless control strategy is proposed to realize a control method for a permanent magnet synchronous motor(PMSM)in full speed range.In the medium-and high-speed range,the improved new sliding mode observer method is used to estimate the motor speed and rotor position information.In the zero and low speed range,in order to avoid the defects of the sliding mode method,the rotating high-frequency voltage signal injection method is used.When switching between low,medium,and high speed,the fuzzy control algorithm is adopted to achieve smooth transitions.The simulation experiment results show that the hybrid mode combining the sliding mode observer and rotating high-frequency voltage injection methods,can effectively reduce the jitter in the algorithm switching process,and realize the smooth control of a PMSM in full speed range.
基金This work was supported by Science and Technology Project of the State Grid Corporation under Grant 5455ZS150004.
文摘UHVDC converter valves during operation may experience overvoltage,which come from the AC or DC systems to which they are connected.Therefore,building an equivalent circuit model(ECM)for the converter valve to analyze the interlayer transient voltage distribution characteristics has important engineering significance for safe and reasonable voltage equalization methods and improving the stability of the DC system.This paper proposes a two-port equivalent circuit model for ±1100 kV converter valve based on the structure of the valve and parameter extraction methods presented.In terms of lumped parameters,integrated ECMs for valve layers are built through impedance-frequency characteristic analysis;in terms of parasitic capacitance parameters,port equivalent parasitic capacitance parameters are obtained by terminal capacitance method and iterative equivalence methods proposed in this paper.By combining integrated ECMs of valve layers and port equivalent parasitic capacitances,the two-port ECM is obtained.Simulations are carried out to test the effectiveness of the twoport ECM.Using the ECM,the voltage transmission characteristics and their influencing factors are analyzed,depending on which corresponding voltage equalization method is proposed in this paper,and the effect of this method is verified through simulation.