期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Chaos quantum particle swarm optimization for reactive power optimization considering voltage stability 被引量:2
1
作者 瞿苏寒 马平 蔡兴国 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第3期351-356,共6页
The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonl... The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonlinear functions having multiple local minima and nonlinear and discontinuous constraints. To deal with the problem,quantum particle swarm optimization (QPSO) is firstly introduced in this paper,and according to QPSO,chaotic quantum particle swarm optimization (CQPSO) is presented,which makes use of the randomness,regularity and ergodicity of chaotic variables to improve the quantum particle swarm optimization algorithm. When the swarm is trapped in local minima,a smaller searching space chaos optimization is used to guide the swarm jumping out the local minima. So it can avoid the premature phenomenon and to trap in a local minima of QPSO. The feasibility and efficiency of the proposed algorithm are verified by the results of calculation and simulation for IEEE 14-buses and IEEE 30-buses systems. 展开更多
关键词 reactive power optimization voltage stability margin quantum particle swarm optimization chaos optimization
在线阅读 下载PDF
Identification of the Worst-case Static Voltage Stability Margin Interval of AC/DC Power System Considering Uncertainty of Renewables 被引量:2
2
作者 Wanbin Liu Shunjiang Lin +2 位作者 Yuerong Yang Mingbo Liu Qifeng Li 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第3期974-987,共14页
Calculation of static voltage stability margin(SVSM)of AC/DC power systems with lots of renewable energy sources(RESs)integration requires consideration of uncertain load growth and renewable energy generation output.... Calculation of static voltage stability margin(SVSM)of AC/DC power systems with lots of renewable energy sources(RESs)integration requires consideration of uncertain load growth and renewable energy generation output.This paper presents a bi-level optimal power flow(BLOPF)model to identify the worst-case SVSM of an AC/DC power system with line commutation converter-based HVDC and multi-terminal voltage sourced converter-based HVDC transmission lines.Constraints of uncertain load growth’s hypercone model and control mode switching of DC converter stations are considered in the BLOPF model.Moreover,uncertain RES output fluctuations are described as intervals,and two three-level optimal power flow(TLOPF)models are established to identify interval bounds of the system worst-case SVSM.The two TLOPF models are both transformed into max–min bi-level optimization models according to independent characteristics of different uncertain variables.Then,transforming the inner level model into its dual form,max–min BLOPF models are simplified to single-level optimization models for direct solution.Calculation results on the modified IEEE-39 bus AC/DC case and an actual large-scale AC/DC case in China indicate correctness and efficiency of the proposed identification method. 展开更多
关键词 AC/DC power system control mode switching convex relaxation dual programming multi-level optimization optimal power flow static voltage stability margin
原文传递
Preventive-corrective Control for Static Voltage Stability Under Multiple N-1 Contingencies Considering Wind Power Uncertainty
3
作者 Yuerong Yang Shunjiang Lin +2 位作者 Qiong Wang Mingbo Liu Qifeng Li 《CSEE Journal of Power and Energy Systems》 2025年第4期1466-1480,共15页
An optimal preventive-corrective control model for static voltage stability under multiple N-1 contingencies considering the wind power uncertainty is established in this paper.The objective is to minimize the control... An optimal preventive-corrective control model for static voltage stability under multiple N-1 contingencies considering the wind power uncertainty is established in this paper.The objective is to minimize the control variable adjustment cost including the load shedding cost of each contingency.The chance constraints of the static voltage stability margins(SvSMs)in the normal operation state and after each N-1 contingency are included.The approximate functions between the probability density functions(PDFs)of SVSMs and load shedding quantity with respect to preventive control variables are obtained to transform the expectation of load shedding quantity and the SvSM chance constraints into deterministic expressions.An approximate sequential convex quadratically constrained quadratic programming iteration method is proposed to solve the optimal control model.In each iteration,the approximate expressions and range are determined by the generated data samples.Moreover,a fast approximation calculation method of second-order matrices is proposed.By the naive Bayes classifier,the most severe N-1 contingencies are selected to replace all the contingencies to be added to the optimization model to improve the computational efficiency.Case studies on the IEEE-39 bus system and an actual provincial power grid demonstrate the effectiveness and efficiency of the proposed method. 展开更多
关键词 Multiple N-1 contingencies preventivecorrective control probabilistic distribution control sequential convex quadratically constrained quadratic programming static voltage stability margin wind power uncertainty
原文传递
Effects of Xe Gas Content and Total Gas Pressure on the Discharge Characteristics of Colour Plasma Display Panels
4
作者 胡文波 韩梦驹 梁志虎 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第4期447-450,共4页
The effects of the Xe gas content and total gas pressure on the discharge characteristics of colour plasma display panels including the sustaining voltage margin, white-field chromaticity, discharge time lag (DTL), ... The effects of the Xe gas content and total gas pressure on the discharge characteristics of colour plasma display panels including the sustaining voltage margin, white-field chromaticity, discharge time lag (DTL), discharge current peak, and full-width-at-half-maximum (FWHM) of the discharge current pulse, are experimentally studied. The results indicate that as the Xe gas content in the He-Ne-Xe gas mixture or total pressure increases, the sustaining voltage margin increases, the white-field chromaticity improves, and the discharge current peak has a maximum value, while DTL and FWHM have a minimum value. The mean electron energy in the gas mixture discharge is also calculated through a numerical solution of Boltzmann equation. The experimental results are explained from a view of the mean electron energy variations with the Xe gas content and total gas pressure. 展开更多
关键词 plasma display panel gas mixture discharge characteristic sustaining voltage margin discharge time lag
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部