This study examines various issues arising in three-phase unbalanced power distribution networks(PDNs)using a comprehensive optimization approach.With the integration of renewable energy sources,increasing energy dema...This study examines various issues arising in three-phase unbalanced power distribution networks(PDNs)using a comprehensive optimization approach.With the integration of renewable energy sources,increasing energy demands,and the adoption of smart grid technologies,power systems are undergoing a rapid transformation,making the need for efficient,reliable,and sustainable distribution networks increasingly critical.In this paper,the reconfiguration problem in a 37-bus unbalanced PDN test system is solved using five different popular metaheuristic algorithms.Among these advanced search algorithms,the Bonobo Optimizer(BO)has demonstrated superior performance in handling the complexities of unbalanced power distribution network optimization.The study is structured around four distinct scenarios:(Ⅰ)improving mean voltage profile and minimizing active power loss,(Ⅱ)minimizing Voltage Unbalance Index(VUI)and Current Unbalance Index(CUI),(Ⅲ)optimizing key reliability indices using both Line Oriented Reliability Index(LORI)and Customer Oriented Reliability Index(CORI)approaches,and(Ⅳ)employing multi-objective optimization using the Pareto front technique to simultaneously minimize active power loss,average CUI,and System Average Interruption Duration Index(SAIDI).The study aims to contribute to the development of more efficient,reliable,and sustainable energy systems by addressing voltage profiles,power losses,reduction of imbalance,and the enhancement of reliability together.展开更多
Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS reco...Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration.A comparison of the model voltage−current characteristics(VCCs)with the experimental ones reveals their adequacy.The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10Å.The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4.展开更多
An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is w...An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.展开更多
A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magne...A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, new demands on the new fast control power supply have led to an enhanced ability of fast response and output current, as well as a new control mode. The structure of cascaded and paralleled H-bridges can meet the demand of extended capacity, and digital control can reMize current and voltage mixed control mode. The validity of the proposed scheme is confirmed by experiments.展开更多
Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used t...Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents.However,CCVSI with traditional controllers have a limited transient and steady state performance.In this paper,we propose an adaptive dynamic programming(ADP) controller with online learning capability to improve transient response and harmonics.The proposed controller works alongside existing proportional integral(PI) controllers to efficiently track the reference currents in the d-q domain.It can generate adaptive control actions to compensate the PI controller.The proposed system was simulated under different nonlinear(three-phase full wave rectifier) load conditions.The performance of the proposed approach was compared with the traditional approach.We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison.The online learning based ADP controller not only reduced average total harmonic distortion by 18.41%,but also outperformed traditional PI controllers during transients.展开更多
A threshold-voltage-based 2-D theoretical model for the Current–Voltage characteristics of the AlGaN/GaN high electron mobility transistors (HEMT’s) is developed. The present work proposes an improved charge-control...A threshold-voltage-based 2-D theoretical model for the Current–Voltage characteristics of the AlGaN/GaN high electron mobility transistors (HEMT’s) is developed. The present work proposes an improved charge-control model by employing the Robin boundary condition when introduced the solution of the 2-D Poisson’s equation in the density of charge depleted in the AlGaN layer. The dependence of 2-DEG sheet carrier concentration on the aluminum composition and AlGaN layer thickness has been investigated in detail. Current–voltage characteristics developed from the 2-DEG model in order to take into account the impact of gate lengths. The relation between the kink effect and existing deep centers has also been confirmed by using an electrical approach, which can allow to adjust some of electron transport parameters in order to optimize the output current.展开更多
The current voltage (IV) characteristics are greatly influenced by the dispersion effects in A1GaN/CaN high electron mobility transistors. The direct current (DC) IV and pulsed IV measurements are performed to giv...The current voltage (IV) characteristics are greatly influenced by the dispersion effects in A1GaN/CaN high electron mobility transistors. The direct current (DC) IV and pulsed IV measurements are performed to give a deep investigation into the dispersion effects, which are mainly related to the trap and self-heating mechanisms. The results show that traps play an important role in the kink effects, and high stress can introduce more traps and defects in the device. With the help of the pulsed IV measurements, the trapping effects and self-heating effects can be separated. The impact of time constants on the dispersion effects is also discussed. In order to achieve an accurate static DC IV measurement, the steady state of the bias points must be considered carefully to avoid the dispersion effects.展开更多
This paper describes a prototype power delivery system developed for high voltage electronic current transformer (ECT) that uses laser light to transfer power to and communicates with the primary converter. The desi...This paper describes a prototype power delivery system developed for high voltage electronic current transformer (ECT) that uses laser light to transfer power to and communicates with the primary converter. The design is based on optical-to-electrical power converters, solid-state diode lasers and optical fibers. Command signals are transmitted via the same up-fiber used to send power from secondary power supply to primary converter. The upward data transmission is completed during the brief interruption of power delivery without affecting steady power-supply. A simple comparator added to the primary converter can take the command data. Experimental results show that the fibers can provide reliable up-link for data transmission at 200 kb/s from the secondary to the primary converter. Based on the delivery system, the secondary converter can control three auxiliary channels to provide additional information. These monitoring channels are used in a time-multiplexing mode to provide information about the operation temperature, voltage and current at the remote unit for monitoring the ECT. This preventive maintenance or built-in test can increase reliability by giving early warning for necessary maintenance request.展开更多
This paper concludes the case study work on the optical sensor, which is a new method for voltage and current measurement. Fiber Bragg gratings (FBG) have been developed and used for decades in the telecommunication i...This paper concludes the case study work on the optical sensor, which is a new method for voltage and current measurement. Fiber Bragg gratings (FBG) have been developed and used for decades in the telecommunication industry. In recent years, FBG sensors have found wide applications in monitoring strain, temperature, voltage and current across all industries. As the process of constructing a robust smart grid, thousands of miles of optical-fibers have been deployed along the power transmission lines for the purpose of power production communication. This paper focuses on using the power optical fiber as voltage/current sensors instead of those copper wired traditional current transformers. By using piezoelectric layers, the optical sensor is able to transform voltage/current magnitude into optical signal, as well as transmit the signal through the optical fiber. The application of using optical fiber will significantly reduce the cost of deploying traditional current transformers all around the power grid. Moreover, the optical sensor is more stable, more accurate and faster, with such characteristics, the smart grid monitoring system could be much better. The application of combining the optical composite low-voltage cable (OPLC) and the optical current sensor in the distribution network for smart distribution monitoring has been analyzed.展开更多
Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluat...Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluate its influence on the voltage interaction between VSC-HVDC and line commutated converter based high voltage direct current(LCC-HVDC),this paper proposes a hybrid multi-infeed interaction factor(HMIIF)calculation method considering the voltage regulation control characteristics of VSC-HVDC.Firstly,for a hybrid multi-infeed high voltage direct current system,an additional equivalent operating admittance matrix is constructed to characterize HVDC equipment characteristics under small disturbance.Secondly,based on the characteristic curve between the reactive power and the voltage of a certain VSC-HVDC project,the additional equivalent operating admittance of VSC-HVDC is derived.The additional equivalent operating admittance matrix calculation method is proposed.Thirdly,the equivalent bus impedance matrix is obtained by modifying the alternating current(AC)system admittance matrix with the additional equivalent operating admittance matrix.On this basis,the HMIIF calculation method based on the equivalent bus impedance ratio is proposed.Finally,the effectiveness of the proposed method is verified in a hybrid dual-infeed high voltage direct current system constructed in Power Systems Computer Aided Design(PSCAD),and the influence of voltage regulation control on HMIIF is analyzed.展开更多
Ultra-high-voltage direct current wall bushings are critical components in direct current transmission systems.Temperature variations and abnormal distributions can signal potential equipment failures that threaten sy...Ultra-high-voltage direct current wall bushings are critical components in direct current transmission systems.Temperature variations and abnormal distributions can signal potential equipment failures that threaten system stability.Therefore,monitoring these critical multi-point temperature variations is essential.However,the unique design of the bushings,featuring insulation sheds of periodic shape,distorts infrared temperature measurements by introducing interference points.These interference points,dependent on the measurement's angle and distance,appear irregularly in infrared images,severely impacting the accuracy of multi-point temperature distribution assessments.To address this challenge,an anomaly detection method is proposed that adaptively identifies interference points.The method identifies interference points by comparing pixels and uses a voting mechanism to improve identification accuracy.Compared with traditional methods,this approach presents two main advantages:adaptive identification capability,which enables it to recognise interference points and adapt to changing conditions,and unsupervised learning,which enables it to work effectively without requiring manually labelled data.Experimental tests on 161 bushing infrared images demonstrate the effectiveness of the method,achieving a 100%success rate in identifying localised overheating issues.The method has been integrated into high-voltage direct current transmission anomaly systems and can be used to monitor critical equipment,enhancing system reliability and safety.展开更多
This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss r...This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss reduction and voltage profile improvement,(2)minimization of voltage and current unbalance indices under various operational cases,and(3)multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index,active power loss,and current unbalance index.Unlike previous research that oftensimplified system components,this work maintains all equipment,including capacitor banks,transformers,and voltage regulators,to ensure realistic results.The study evaluates twelve metaheuristic algorithms to solve the reconfiguration problem(RecPrb)in UPDNs.A comprehensive statistical analysis is conducted to identify the most efficient algorithm for solving the RecPrb in the 123-Bus UPDN,employing multiple performance metrics and comparative techniques.The Artificial Hummingbird Algorithm emerges as the top-performing algorithm and is subsequently applied to address a multi-objective optimization challenge in the 123-Bus UPDN.This research contributes valuable insights for network operators and researchers in selecting suitable algorithms for specific reconfiguration scenarios,advancing the field of UPDN optimization and management.展开更多
Optimizing photovoltaic(PV)power utilization in battery systems is challenging due to solar intermittency,battery efficiency,and lifespan management.This paper proposes a novel forecast-based battery charging manageme...Optimizing photovoltaic(PV)power utilization in battery systems is challenging due to solar intermittency,battery efficiency,and lifespan management.This paper proposes a novel forecast-based battery charging management(BCM)strategy to enhance PV power utilization.A string of Li-ion battery cells with diverse capacities and states of charge(SOC)is contemplated in this constant current/-constant voltage(CC/CV)battery-charging scheme.Significant amounts of PV power are often wasted because the CC/CV mode cannot fully exploit the available power to maintain appropriate charging rates.To address this issue,the proposed BCM algorithm selects an optimal set of battery cells for charging at any given time based on forecasted PV power generation,ensuring maximum power is obtained from the PV system.Additionally,a support vector regression(SVR)-based forecasting model is developed to predict PV power generation precisely.The results indicate that the anticipated BCM strategy achieves an overall utilization rate of 87.47%of the PVgenerated power for battery charging under various weather conditions.展开更多
A new approach for the design and implementation of a programmable voltage reference based on an improved current mode bandgap voltage reference is presented. The circuit is simulated and fabricated with Chartered 0....A new approach for the design and implementation of a programmable voltage reference based on an improved current mode bandgap voltage reference is presented. The circuit is simulated and fabricated with Chartered 0. 35μm mixed-signal technology. Measurements demonstrate that the temperature coefficient is ± 36. 3ppm/℃ from 0 to 100℃ when the VID inputs are 11110.As the supply voltage is varied from 2.7 to 5V, the voltage reference varies by about 5mV. The maximum glitch of the transient response is about 20mV at 125kHz. Depending on the state of the five VID inputs,an output voltage between 1.1 and 1.85V is programmed in increments of 25mV.展开更多
Interface traps generated under hot carrier (HC) stress in LDD nMOST's are monitored by the direct current current voltage (DCIV) measurement technique and charge pumping (CP) technique.The measured and analyzed...Interface traps generated under hot carrier (HC) stress in LDD nMOST's are monitored by the direct current current voltage (DCIV) measurement technique and charge pumping (CP) technique.The measured and analyzed results show that the D peak in DCIV spectrum,which related to the drain region,is affected by a superfluous drain leakage current.The band trap band tunneling current is dominant of this current.展开更多
In contrast to the conventional direct current railway electrification system(DC-RES),the medium voltage direct current(MVDC)-RES is considered promising for long-distance high-speed corridors.In the MVDC-RES,traction...In contrast to the conventional direct current railway electrification system(DC-RES),the medium voltage direct current(MVDC)-RES is considered promising for long-distance high-speed corridors.In the MVDC-RES,traction substations(TSSs)are placed much farther and train loads are much heavier than in the conventional DC-RES.Hence,the MVDC-RES brings a drastic change in catenary voltage,TSS spacing,and train loading,which affects rail potential and stray current.In this connection,this work performs some significant quantitative analysis of rail potential and stray current in the MVDC-RES environment.An MVDC simulation model is proposed and different grounding schemes are analyzed for a single-train and two TSSs scenario as well as for a multi-train multi-TSS scenario.According to the simulation and analysis,the maximum values of rail potential and stray current at MVDC-RES distances and the maximum safe distance between adjacent TSSs are determined.展开更多
Intrinsic Josephson junctions in misaligned T12Ba2CaCu208 thin film were fabricated on LaA103 substrate. The temperature dependence of the critical current is investigated around liquid nitrogen temperature. In the cu...Intrinsic Josephson junctions in misaligned T12Ba2CaCu208 thin film were fabricated on LaA103 substrate. The temperature dependence of the critical current is investigated around liquid nitrogen temperature. In the current voltage characteristic, large voltage jump and lack of resistive branch are observed, which shows good consistency with the intrinsic Josephson junctions. By analyzing the large gap voltage in the curve, great suppression of the energy gap is found. Through discussing the temperature dependence of the gap voltage in liquid nitrogen temperature, it is shown that this phenomenon can be caused by the non-equilibrium quasiparticle injection. The temperature influence on the excess current also confirms the non-equilibrium effect.展开更多
Two sets of Organic dyes were developed using kassod and senna plant leaves. The first sets of dyes are the organic dye from the leaves of two plants while the second set is the dye produce after combining together th...Two sets of Organic dyes were developed using kassod and senna plant leaves. The first sets of dyes are the organic dye from the leaves of two plants while the second set is the dye produce after combining together the dyes from the kassod and senna plants leaves. The two sets of dyes were used to sensitize the grown films. The films were characterized and the current voltage values of the grown films were obtained. The solar simulation result of the grown film for Kassod dyed TiO<sub>2</sub> film was recorded for single dyes and for the <span "="">combination of the two dyes. The result also covers absorbance of the spectra lines, absorbance coefficient values of the dyed TiO<sub>2</sub>, as well as transmittance and energy band gap values of the developed films. The precursors of tin (IV) chloride (SnCl<sub>4</sub>) (60%) and hydrofluoric acid (40%) was deposited on the cleaned soda</span>-lime glass using the chemical vapour deposition method and <span "="">nitrogen gas was supplied as a carrier gas through the bubbler to form the FTO layer. Titanium dioxide paste (TiO<sub>2</sub>) was deposited using </span>a <span "="">screen printing method to form M-TiO<sub>2</sub>.展开更多
Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC g...Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB.展开更多
The way of neutral point to earth via full compensation arc suppression coil can solve the problem of residual current compensation in coal mine power network effectively. Based on the analysis on the grounding curren...The way of neutral point to earth via full compensation arc suppression coil can solve the problem of residual current compensation in coal mine power network effectively. Based on the analysis on the grounding current detection results of Xieqiao coal mine, the conclusion that harmonic component of grounding current is dominated by higher harmonics with complex harmonic sources in coal mine power network system was obtained. The influences of harmonic source type and fault point position on harmonic voltage and harmonic current were analyzed theoretically. The influences of earthed fault feeder detection result and the estimation errors of parameters to earth on residual current compensation were analyzed. A new thought of residual current prediction and the selections of model method and control method were proposed on this basis. The simulation results prove that harmonic amplitudes of zero sequence voltage and zero sequence current are determined by harmonic source type as well as fault point position in coal mine power network, and also prove that zero sequence voltage detection can avoid the unstable problem of coal mine power network system caused by undercompensation of capacitive current. Finally, the experimental device of full compensation arc suppression coil is introduced.展开更多
基金supported by the Scientific and Technological Research Council of Turkey(TUBITAK)under Grant No.124E002(1001-Project).
文摘This study examines various issues arising in three-phase unbalanced power distribution networks(PDNs)using a comprehensive optimization approach.With the integration of renewable energy sources,increasing energy demands,and the adoption of smart grid technologies,power systems are undergoing a rapid transformation,making the need for efficient,reliable,and sustainable distribution networks increasingly critical.In this paper,the reconfiguration problem in a 37-bus unbalanced PDN test system is solved using five different popular metaheuristic algorithms.Among these advanced search algorithms,the Bonobo Optimizer(BO)has demonstrated superior performance in handling the complexities of unbalanced power distribution network optimization.The study is structured around four distinct scenarios:(Ⅰ)improving mean voltage profile and minimizing active power loss,(Ⅱ)minimizing Voltage Unbalance Index(VUI)and Current Unbalance Index(CUI),(Ⅲ)optimizing key reliability indices using both Line Oriented Reliability Index(LORI)and Customer Oriented Reliability Index(CORI)approaches,and(Ⅳ)employing multi-objective optimization using the Pareto front technique to simultaneously minimize active power loss,average CUI,and System Average Interruption Duration Index(SAIDI).The study aims to contribute to the development of more efficient,reliable,and sustainable energy systems by addressing voltage profiles,power losses,reduction of imbalance,and the enhancement of reliability together.
基金conducted within the state assignment of the Ministry of Science and Higher Education for universities(Project No.FZRR-2023-0009).
文摘Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration.A comparison of the model voltage−current characteristics(VCCs)with the experimental ones reveals their adequacy.The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10Å.The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4.
文摘An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.
基金supported by ITER Program of China(973 Program)(No.2011GB109002)National Natural Science Foundation of China(No.11275056)Hefei University of Technology Doctor Research Foundation of China(No.2011HGBZ1292)
文摘A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, new demands on the new fast control power supply have led to an enhanced ability of fast response and output current, as well as a new control mode. The structure of cascaded and paralleled H-bridges can meet the demand of extended capacity, and digital control can reMize current and voltage mixed control mode. The validity of the proposed scheme is confirmed by experiments.
文摘Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents.However,CCVSI with traditional controllers have a limited transient and steady state performance.In this paper,we propose an adaptive dynamic programming(ADP) controller with online learning capability to improve transient response and harmonics.The proposed controller works alongside existing proportional integral(PI) controllers to efficiently track the reference currents in the d-q domain.It can generate adaptive control actions to compensate the PI controller.The proposed system was simulated under different nonlinear(three-phase full wave rectifier) load conditions.The performance of the proposed approach was compared with the traditional approach.We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison.The online learning based ADP controller not only reduced average total harmonic distortion by 18.41%,but also outperformed traditional PI controllers during transients.
文摘A threshold-voltage-based 2-D theoretical model for the Current–Voltage characteristics of the AlGaN/GaN high electron mobility transistors (HEMT’s) is developed. The present work proposes an improved charge-control model by employing the Robin boundary condition when introduced the solution of the 2-D Poisson’s equation in the density of charge depleted in the AlGaN layer. The dependence of 2-DEG sheet carrier concentration on the aluminum composition and AlGaN layer thickness has been investigated in detail. Current–voltage characteristics developed from the 2-DEG model in order to take into account the impact of gate lengths. The relation between the kink effect and existing deep centers has also been confirmed by using an electrical approach, which can allow to adjust some of electron transport parameters in order to optimize the output current.
基金Project supported by the National Basic Research Program of China (Grant No.2010CB327503)the National Natural Science Foundation of China (Grant No.60890191)
文摘The current voltage (IV) characteristics are greatly influenced by the dispersion effects in A1GaN/CaN high electron mobility transistors. The direct current (DC) IV and pulsed IV measurements are performed to give a deep investigation into the dispersion effects, which are mainly related to the trap and self-heating mechanisms. The results show that traps play an important role in the kink effects, and high stress can introduce more traps and defects in the device. With the help of the pulsed IV measurements, the trapping effects and self-heating effects can be separated. The impact of time constants on the dispersion effects is also discussed. In order to achieve an accurate static DC IV measurement, the steady state of the bias points must be considered carefully to avoid the dispersion effects.
基金Project supported by the National Natural Science Foundation of China (Grant No.50447006)
文摘This paper describes a prototype power delivery system developed for high voltage electronic current transformer (ECT) that uses laser light to transfer power to and communicates with the primary converter. The design is based on optical-to-electrical power converters, solid-state diode lasers and optical fibers. Command signals are transmitted via the same up-fiber used to send power from secondary power supply to primary converter. The upward data transmission is completed during the brief interruption of power delivery without affecting steady power-supply. A simple comparator added to the primary converter can take the command data. Experimental results show that the fibers can provide reliable up-link for data transmission at 200 kb/s from the secondary to the primary converter. Based on the delivery system, the secondary converter can control three auxiliary channels to provide additional information. These monitoring channels are used in a time-multiplexing mode to provide information about the operation temperature, voltage and current at the remote unit for monitoring the ECT. This preventive maintenance or built-in test can increase reliability by giving early warning for necessary maintenance request.
文摘This paper concludes the case study work on the optical sensor, which is a new method for voltage and current measurement. Fiber Bragg gratings (FBG) have been developed and used for decades in the telecommunication industry. In recent years, FBG sensors have found wide applications in monitoring strain, temperature, voltage and current across all industries. As the process of constructing a robust smart grid, thousands of miles of optical-fibers have been deployed along the power transmission lines for the purpose of power production communication. This paper focuses on using the power optical fiber as voltage/current sensors instead of those copper wired traditional current transformers. By using piezoelectric layers, the optical sensor is able to transform voltage/current magnitude into optical signal, as well as transmit the signal through the optical fiber. The application of using optical fiber will significantly reduce the cost of deploying traditional current transformers all around the power grid. Moreover, the optical sensor is more stable, more accurate and faster, with such characteristics, the smart grid monitoring system could be much better. The application of combining the optical composite low-voltage cable (OPLC) and the optical current sensor in the distribution network for smart distribution monitoring has been analyzed.
基金supported by the Technology Project of the State Grid Corporation Headquarters Management(Contract No.5100-202158467A-0-0-00).
文摘Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluate its influence on the voltage interaction between VSC-HVDC and line commutated converter based high voltage direct current(LCC-HVDC),this paper proposes a hybrid multi-infeed interaction factor(HMIIF)calculation method considering the voltage regulation control characteristics of VSC-HVDC.Firstly,for a hybrid multi-infeed high voltage direct current system,an additional equivalent operating admittance matrix is constructed to characterize HVDC equipment characteristics under small disturbance.Secondly,based on the characteristic curve between the reactive power and the voltage of a certain VSC-HVDC project,the additional equivalent operating admittance of VSC-HVDC is derived.The additional equivalent operating admittance matrix calculation method is proposed.Thirdly,the equivalent bus impedance matrix is obtained by modifying the alternating current(AC)system admittance matrix with the additional equivalent operating admittance matrix.On this basis,the HMIIF calculation method based on the equivalent bus impedance ratio is proposed.Finally,the effectiveness of the proposed method is verified in a hybrid dual-infeed high voltage direct current system constructed in Power Systems Computer Aided Design(PSCAD),and the influence of voltage regulation control on HMIIF is analyzed.
基金National Natural Science Foundation of China,Grant/Award Numbers:62106033,42367066。
文摘Ultra-high-voltage direct current wall bushings are critical components in direct current transmission systems.Temperature variations and abnormal distributions can signal potential equipment failures that threaten system stability.Therefore,monitoring these critical multi-point temperature variations is essential.However,the unique design of the bushings,featuring insulation sheds of periodic shape,distorts infrared temperature measurements by introducing interference points.These interference points,dependent on the measurement's angle and distance,appear irregularly in infrared images,severely impacting the accuracy of multi-point temperature distribution assessments.To address this challenge,an anomaly detection method is proposed that adaptively identifies interference points.The method identifies interference points by comparing pixels and uses a voting mechanism to improve identification accuracy.Compared with traditional methods,this approach presents two main advantages:adaptive identification capability,which enables it to recognise interference points and adapt to changing conditions,and unsupervised learning,which enables it to work effectively without requiring manually labelled data.Experimental tests on 161 bushing infrared images demonstrate the effectiveness of the method,achieving a 100%success rate in identifying localised overheating issues.The method has been integrated into high-voltage direct current transmission anomaly systems and can be used to monitor critical equipment,enhancing system reliability and safety.
基金supported by the Scientific and Technological Research Council of Turkey(TUBITAK)under Grant No.124E002(1001-Project).
文摘This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss reduction and voltage profile improvement,(2)minimization of voltage and current unbalance indices under various operational cases,and(3)multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index,active power loss,and current unbalance index.Unlike previous research that oftensimplified system components,this work maintains all equipment,including capacitor banks,transformers,and voltage regulators,to ensure realistic results.The study evaluates twelve metaheuristic algorithms to solve the reconfiguration problem(RecPrb)in UPDNs.A comprehensive statistical analysis is conducted to identify the most efficient algorithm for solving the RecPrb in the 123-Bus UPDN,employing multiple performance metrics and comparative techniques.The Artificial Hummingbird Algorithm emerges as the top-performing algorithm and is subsequently applied to address a multi-objective optimization challenge in the 123-Bus UPDN.This research contributes valuable insights for network operators and researchers in selecting suitable algorithms for specific reconfiguration scenarios,advancing the field of UPDN optimization and management.
文摘Optimizing photovoltaic(PV)power utilization in battery systems is challenging due to solar intermittency,battery efficiency,and lifespan management.This paper proposes a novel forecast-based battery charging management(BCM)strategy to enhance PV power utilization.A string of Li-ion battery cells with diverse capacities and states of charge(SOC)is contemplated in this constant current/-constant voltage(CC/CV)battery-charging scheme.Significant amounts of PV power are often wasted because the CC/CV mode cannot fully exploit the available power to maintain appropriate charging rates.To address this issue,the proposed BCM algorithm selects an optimal set of battery cells for charging at any given time based on forecasted PV power generation,ensuring maximum power is obtained from the PV system.Additionally,a support vector regression(SVR)-based forecasting model is developed to predict PV power generation precisely.The results indicate that the anticipated BCM strategy achieves an overall utilization rate of 87.47%of the PVgenerated power for battery charging under various weather conditions.
文摘A new approach for the design and implementation of a programmable voltage reference based on an improved current mode bandgap voltage reference is presented. The circuit is simulated and fabricated with Chartered 0. 35μm mixed-signal technology. Measurements demonstrate that the temperature coefficient is ± 36. 3ppm/℃ from 0 to 100℃ when the VID inputs are 11110.As the supply voltage is varied from 2.7 to 5V, the voltage reference varies by about 5mV. The maximum glitch of the transient response is about 20mV at 125kHz. Depending on the state of the five VID inputs,an output voltage between 1.1 and 1.85V is programmed in increments of 25mV.
文摘Interface traps generated under hot carrier (HC) stress in LDD nMOST's are monitored by the direct current current voltage (DCIV) measurement technique and charge pumping (CP) technique.The measured and analyzed results show that the D peak in DCIV spectrum,which related to the drain region,is affected by a superfluous drain leakage current.The band trap band tunneling current is dominant of this current.
文摘In contrast to the conventional direct current railway electrification system(DC-RES),the medium voltage direct current(MVDC)-RES is considered promising for long-distance high-speed corridors.In the MVDC-RES,traction substations(TSSs)are placed much farther and train loads are much heavier than in the conventional DC-RES.Hence,the MVDC-RES brings a drastic change in catenary voltage,TSS spacing,and train loading,which affects rail potential and stray current.In this connection,this work performs some significant quantitative analysis of rail potential and stray current in the MVDC-RES environment.An MVDC simulation model is proposed and different grounding schemes are analyzed for a single-train and two TSSs scenario as well as for a multi-train multi-TSS scenario.According to the simulation and analysis,the maximum values of rail potential and stray current at MVDC-RES distances and the maximum safe distance between adjacent TSSs are determined.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61176119, 61171028, 51002081, and 61101018) and the Fundamental Research Funds for the Central Universities of China.
文摘Intrinsic Josephson junctions in misaligned T12Ba2CaCu208 thin film were fabricated on LaA103 substrate. The temperature dependence of the critical current is investigated around liquid nitrogen temperature. In the current voltage characteristic, large voltage jump and lack of resistive branch are observed, which shows good consistency with the intrinsic Josephson junctions. By analyzing the large gap voltage in the curve, great suppression of the energy gap is found. Through discussing the temperature dependence of the gap voltage in liquid nitrogen temperature, it is shown that this phenomenon can be caused by the non-equilibrium quasiparticle injection. The temperature influence on the excess current also confirms the non-equilibrium effect.
文摘Two sets of Organic dyes were developed using kassod and senna plant leaves. The first sets of dyes are the organic dye from the leaves of two plants while the second set is the dye produce after combining together the dyes from the kassod and senna plants leaves. The two sets of dyes were used to sensitize the grown films. The films were characterized and the current voltage values of the grown films were obtained. The solar simulation result of the grown film for Kassod dyed TiO<sub>2</sub> film was recorded for single dyes and for the <span "="">combination of the two dyes. The result also covers absorbance of the spectra lines, absorbance coefficient values of the dyed TiO<sub>2</sub>, as well as transmittance and energy band gap values of the developed films. The precursors of tin (IV) chloride (SnCl<sub>4</sub>) (60%) and hydrofluoric acid (40%) was deposited on the cleaned soda</span>-lime glass using the chemical vapour deposition method and <span "="">nitrogen gas was supplied as a carrier gas through the bubbler to form the FTO layer. Titanium dioxide paste (TiO<sub>2</sub>) was deposited using </span>a <span "="">screen printing method to form M-TiO<sub>2</sub>.
基金This project is funded by the Dongying Science Development Fund Project(DJ2021013).
文摘Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB.
基金The financial support from the National Natural Science Foundation of China (No. 51107143)
文摘The way of neutral point to earth via full compensation arc suppression coil can solve the problem of residual current compensation in coal mine power network effectively. Based on the analysis on the grounding current detection results of Xieqiao coal mine, the conclusion that harmonic component of grounding current is dominated by higher harmonics with complex harmonic sources in coal mine power network system was obtained. The influences of harmonic source type and fault point position on harmonic voltage and harmonic current were analyzed theoretically. The influences of earthed fault feeder detection result and the estimation errors of parameters to earth on residual current compensation were analyzed. A new thought of residual current prediction and the selections of model method and control method were proposed on this basis. The simulation results prove that harmonic amplitudes of zero sequence voltage and zero sequence current are determined by harmonic source type as well as fault point position in coal mine power network, and also prove that zero sequence voltage detection can avoid the unstable problem of coal mine power network system caused by undercompensation of capacitive current. Finally, the experimental device of full compensation arc suppression coil is introduced.