The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain deg...The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches.展开更多
To reduce output voltage noise and improve dynamic response performance,this study designed a buck converter on the basis of secondary filters and adaptive voltage positioning(AVP).A hybrid control method was proposed...To reduce output voltage noise and improve dynamic response performance,this study designed a buck converter on the basis of secondary filters and adaptive voltage positioning(AVP).A hybrid control method was proposed for the compensation of the secondary filter.The introduction of a high-frequency feedback path,in addition to the traditional feedback path,effectively improved the influence of the secondary filter on the loop stability and direct current regulation performance.A small-signal model of the buck converter based on the proposed control method was derived,and the stability and selection of control parameters were analyzed.AVP is realized using an easy-to-implement and low-cost control method that was proposed to improve dynamic response performance by changing the low-frequency gain of the control loop and load regulation of the output voltage.The experimental results of the buck converter showed that the proposed method effectively reduced the output voltage noise by 50%and improved the dynamic response capability to meet the target requirements of mainstream electronic systems.展开更多
Leakage power and propagation delay are two significant issues found in sub-micron technology-based Complementary Metal-Oxide-Semiconductor(CMOS)-based Very Large-Scale Integration(VLSI)circuit designs.Positive Channel...Leakage power and propagation delay are two significant issues found in sub-micron technology-based Complementary Metal-Oxide-Semiconductor(CMOS)-based Very Large-Scale Integration(VLSI)circuit designs.Positive Channel Metal Oxide Semiconductor(PMOS)has been replaced by Negative Channel Metal Oxide Semiconductor(NMOS)in recent years,with low dimen-sion-switching changes in order to shape the mirror of voltage comparator.NMOS is used to reduce stacking leakage as well as total exchange.Domino Logic Cir-cuit is a powerful and versatile digital programmer that gained popularity in recent years.In this study regarding Adaptive Sub Threshold Voltage Level Control Pro-blem,the researchers intend to solve the contention issues,reduce power dissipa-tion,and increase the noise immunity by proposing Adaptive Sub Threshold Voltage Level Control(ASVLC)-based domino circuit.The efficiency and effec-tiveness of the domino circuit are demonstrated through simulation results.The suggested system makes use of high-speed broad fan-gate circuits,occupies mini-mum space,and consumes meagre amount of power.The proposed circuit was validated in Cadence simulation tool at a supply voltage of 1V,frequency of 100 MHz,and an operating temperature of 27°C with 64 input OR gates.As per the simulation results,the suggested Domino Gate reduced the power dissipa-tion by 17.58 percent and improved the noise immunity by 1.21 times in compar-ison with standard domino logic circuits.展开更多
基金Financial support was provided by the State Grid Sichuan Electric Power Company Science and Technology Project“Key Research on Development Path Planning and Key Operation Technologies of New Rural Electrification Construction”under Grant No.52199623000G.
文摘The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches.
文摘To reduce output voltage noise and improve dynamic response performance,this study designed a buck converter on the basis of secondary filters and adaptive voltage positioning(AVP).A hybrid control method was proposed for the compensation of the secondary filter.The introduction of a high-frequency feedback path,in addition to the traditional feedback path,effectively improved the influence of the secondary filter on the loop stability and direct current regulation performance.A small-signal model of the buck converter based on the proposed control method was derived,and the stability and selection of control parameters were analyzed.AVP is realized using an easy-to-implement and low-cost control method that was proposed to improve dynamic response performance by changing the low-frequency gain of the control loop and load regulation of the output voltage.The experimental results of the buck converter showed that the proposed method effectively reduced the output voltage noise by 50%and improved the dynamic response capability to meet the target requirements of mainstream electronic systems.
文摘Leakage power and propagation delay are two significant issues found in sub-micron technology-based Complementary Metal-Oxide-Semiconductor(CMOS)-based Very Large-Scale Integration(VLSI)circuit designs.Positive Channel Metal Oxide Semiconductor(PMOS)has been replaced by Negative Channel Metal Oxide Semiconductor(NMOS)in recent years,with low dimen-sion-switching changes in order to shape the mirror of voltage comparator.NMOS is used to reduce stacking leakage as well as total exchange.Domino Logic Cir-cuit is a powerful and versatile digital programmer that gained popularity in recent years.In this study regarding Adaptive Sub Threshold Voltage Level Control Pro-blem,the researchers intend to solve the contention issues,reduce power dissipa-tion,and increase the noise immunity by proposing Adaptive Sub Threshold Voltage Level Control(ASVLC)-based domino circuit.The efficiency and effec-tiveness of the domino circuit are demonstrated through simulation results.The suggested system makes use of high-speed broad fan-gate circuits,occupies mini-mum space,and consumes meagre amount of power.The proposed circuit was validated in Cadence simulation tool at a supply voltage of 1V,frequency of 100 MHz,and an operating temperature of 27°C with 64 input OR gates.As per the simulation results,the suggested Domino Gate reduced the power dissipa-tion by 17.58 percent and improved the noise immunity by 1.21 times in compar-ison with standard domino logic circuits.