Advanced microfluidic technology was used to examine the microscopic viscous and inertial effects evolution of water flow in rock joints. The influence of void space on fluid flow behaviour in rock joints under differ...Advanced microfluidic technology was used to examine the microscopic viscous and inertial effects evolution of water flow in rock joints. The influence of void space on fluid flow behaviour in rock joints under different flow velocities was experimentally investigated at the micro scale. Using advanced fabrication technology of microfluidic device, micro flow channels of semicircular, triangular, rectangular and pentagonal cavities were fabricated to simulate different void space of rock joints, respectively. Using the fluorescence labelling approach, the trajectory of water flow was captured by the microscope digital camera when it passed over the cavity under different flow velocities. The flow tests show that the flow trajectory deviated towards the inside of the cavity at low flow velocities. With the increase in flow velocity, this degree of flow trajectory deviation decreased until there was no trajectory deviation for flow in the straight parallel channel. The flow trajectory deviation initially reduced from the void corner near the entrance. At the same time, a small eddy appeared near the void corner of the entrance. The size and intensity of the eddy increased with the flow velocity until it occupied the whole cavity domain. The gradual reduction of flow trajectory near the straight parallel channel and the growth of eddy inside the cavity reflect the evolution of microscopic viscous and inertial forces under different flow velocities.The eddy formed inside the cavity does not contribute to the total flow flux, but the running of the eddy consumes flow energy. This amount of pressure loss due to voids could contribute to the nonlinear deviation of fracture fluid flow from Darcy's law. This study contributes to the fundamental understanding of non-Darcy's flow occurrence in rock joints at the micro scale.展开更多
This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basi...This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basic characteristics, kinematic characteristics, initiation mechanisms and physical mechanical parameters of the Daguangbao landslide, generalized a landslide prototype, and established a geological model and performed simulation tests. Based on the seismic wave propagation theory of rock-soil mass, rock fracture mechanics and the effective stress principle, we found that the void space gas effect is due to the occurrence of excess void space gas pressure when the dynamic response of seismic loads impacts the void space gas in weak intercalated layers of the slope. The excess void space gas pressure generated by the vibration(earthquake) damages the rock mass around the void space with a certain regularity. The model test results show that the effective shear strength of the rock mass can be reduced by 4.4% to 21.6% due to the void space gas effect.展开更多
根据各气泡参数的几何意义,推导了基于直线导线法的混凝土气泡分布密度与气泡间距系数计算公式,复核了欧美与我国各现行规范中对气泡参数计算的规定,并对我国现行规范在该方面存在的问题提出了修正建议。复核发现,我国铁路、公路、水运...根据各气泡参数的几何意义,推导了基于直线导线法的混凝土气泡分布密度与气泡间距系数计算公式,复核了欧美与我国各现行规范中对气泡参数计算的规定,并对我国现行规范在该方面存在的问题提出了修正建议。复核发现,我国铁路、公路、水运与部分电力规范中对临界浆气比的取值为4.33,应改为4.34。公路规范所给出的气泡间距系数计算公式中部分系数存在错误,不符合气泡间距系数的几何意义。我国公路与水运规范中都没有注意到当含气量或含浆量取“%”为单位时,其值为以体积比比值表示时的100倍,若要保持计算公式中各项系数不变,应规定含气量与含浆量本身就是体积比比值。除铁路规范外,我国现行规范中还普遍存在计算气泡空间密度时误将1 mm 3混凝土中气泡个数定义为1000 mm 3混凝土中的气泡个数以及在计算气泡间距系数(单位mm)时误将平均10 mm导线切割的气泡个数(单位cm-1)作为气泡频率(单位mm-1)代入计算公式的问题。以上问题都需要在各规范的下一次修编工作中重视与更正。展开更多
The architecture of the Great Pyramid at Giza is based on fascinating golden mean geometry. Recently the ratio of the in-sphere volume to the pyramid volume was calculated. One yields as result <em>R</em>&...The architecture of the Great Pyramid at Giza is based on fascinating golden mean geometry. Recently the ratio of the in-sphere volume to the pyramid volume was calculated. One yields as result <em>R</em><sub><em>V</em></sub> = π <span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span> <em><em style="white-space:normal;">φ</em></em><sup>5</sup>, where <img src="Edit_83decbce-7252-44ed-a822-fef13e43fd2a.bmp" alt="" /> is the golden mean. It is important that the number <em>φ</em><sup>5</sup> is a fundamental constant of nature describing phase transition from microscopic to cosmic scale. In this contribution the relatively small volume ratio of the Great Pyramid was compared to that of selected convex polyhedral solids such as the <em>Platonic </em>solids respectively the face-rich truncated icosahedron (bucky ball) as one of <em>Archimedes</em>’ solids leading to effective filling of the polyhedron by its in-sphere and therefore the highest volume ratio of the selected examples. The smallest ratio was found for the Great Pyramid. A regression analysis delivers the highly reliable volume ratio relation <img src="Edit_79e766ce-5580-4ae0-a706-570e0f3f1bd8.bmp" alt="" />, where <em>nF</em> represents the number of polyhedron faces and b approximates the silver mean. For less-symmetrical solids with a unique axis (tetragonal pyramids) the in-sphere can be replaced by a biaxial ellipsoid of maximum volume to adjust the <em>R</em><sub><em>V</em></sub> relation more reliably.展开更多
基金support from the Australian Research Council-linkage Project
文摘Advanced microfluidic technology was used to examine the microscopic viscous and inertial effects evolution of water flow in rock joints. The influence of void space on fluid flow behaviour in rock joints under different flow velocities was experimentally investigated at the micro scale. Using advanced fabrication technology of microfluidic device, micro flow channels of semicircular, triangular, rectangular and pentagonal cavities were fabricated to simulate different void space of rock joints, respectively. Using the fluorescence labelling approach, the trajectory of water flow was captured by the microscope digital camera when it passed over the cavity under different flow velocities. The flow tests show that the flow trajectory deviated towards the inside of the cavity at low flow velocities. With the increase in flow velocity, this degree of flow trajectory deviation decreased until there was no trajectory deviation for flow in the straight parallel channel. The flow trajectory deviation initially reduced from the void corner near the entrance. At the same time, a small eddy appeared near the void corner of the entrance. The size and intensity of the eddy increased with the flow velocity until it occupied the whole cavity domain. The gradual reduction of flow trajectory near the straight parallel channel and the growth of eddy inside the cavity reflect the evolution of microscopic viscous and inertial forces under different flow velocities.The eddy formed inside the cavity does not contribute to the total flow flux, but the running of the eddy consumes flow energy. This amount of pressure loss due to voids could contribute to the nonlinear deviation of fracture fluid flow from Darcy's law. This study contributes to the fundamental understanding of non-Darcy's flow occurrence in rock joints at the micro scale.
基金funded by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No.SKLGP2016Z015)the Natural Science Foundation of China (No. 41572308)
文摘This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basic characteristics, kinematic characteristics, initiation mechanisms and physical mechanical parameters of the Daguangbao landslide, generalized a landslide prototype, and established a geological model and performed simulation tests. Based on the seismic wave propagation theory of rock-soil mass, rock fracture mechanics and the effective stress principle, we found that the void space gas effect is due to the occurrence of excess void space gas pressure when the dynamic response of seismic loads impacts the void space gas in weak intercalated layers of the slope. The excess void space gas pressure generated by the vibration(earthquake) damages the rock mass around the void space with a certain regularity. The model test results show that the effective shear strength of the rock mass can be reduced by 4.4% to 21.6% due to the void space gas effect.
文摘根据各气泡参数的几何意义,推导了基于直线导线法的混凝土气泡分布密度与气泡间距系数计算公式,复核了欧美与我国各现行规范中对气泡参数计算的规定,并对我国现行规范在该方面存在的问题提出了修正建议。复核发现,我国铁路、公路、水运与部分电力规范中对临界浆气比的取值为4.33,应改为4.34。公路规范所给出的气泡间距系数计算公式中部分系数存在错误,不符合气泡间距系数的几何意义。我国公路与水运规范中都没有注意到当含气量或含浆量取“%”为单位时,其值为以体积比比值表示时的100倍,若要保持计算公式中各项系数不变,应规定含气量与含浆量本身就是体积比比值。除铁路规范外,我国现行规范中还普遍存在计算气泡空间密度时误将1 mm 3混凝土中气泡个数定义为1000 mm 3混凝土中的气泡个数以及在计算气泡间距系数(单位mm)时误将平均10 mm导线切割的气泡个数(单位cm-1)作为气泡频率(单位mm-1)代入计算公式的问题。以上问题都需要在各规范的下一次修编工作中重视与更正。
文摘The architecture of the Great Pyramid at Giza is based on fascinating golden mean geometry. Recently the ratio of the in-sphere volume to the pyramid volume was calculated. One yields as result <em>R</em><sub><em>V</em></sub> = π <span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span> <em><em style="white-space:normal;">φ</em></em><sup>5</sup>, where <img src="Edit_83decbce-7252-44ed-a822-fef13e43fd2a.bmp" alt="" /> is the golden mean. It is important that the number <em>φ</em><sup>5</sup> is a fundamental constant of nature describing phase transition from microscopic to cosmic scale. In this contribution the relatively small volume ratio of the Great Pyramid was compared to that of selected convex polyhedral solids such as the <em>Platonic </em>solids respectively the face-rich truncated icosahedron (bucky ball) as one of <em>Archimedes</em>’ solids leading to effective filling of the polyhedron by its in-sphere and therefore the highest volume ratio of the selected examples. The smallest ratio was found for the Great Pyramid. A regression analysis delivers the highly reliable volume ratio relation <img src="Edit_79e766ce-5580-4ae0-a706-570e0f3f1bd8.bmp" alt="" />, where <em>nF</em> represents the number of polyhedron faces and b approximates the silver mean. For less-symmetrical solids with a unique axis (tetragonal pyramids) the in-sphere can be replaced by a biaxial ellipsoid of maximum volume to adjust the <em>R</em><sub><em>V</em></sub> relation more reliably.