A continuum model of solids with cylindrical microvoids is proposed based on the Taylor dislocation model. The model is an extension of Gurson model in the sense that the void size effect is accounted for. Beside the ...A continuum model of solids with cylindrical microvoids is proposed based on the Taylor dislocation model. The model is an extension of Gurson model in the sense that the void size effect is accounted for. Beside the void volume fraction f, the intrinsic material length l becomes a parameter representing voids since the void size comes into play in the Gurson model. Approximate yield functions in analytic forms are suggested for both solids with cylindrical microvoids and with spherical microvoids. The application to uniaxial tension curves shows a precise agreement between the approximate analytic yield function and the exact parametric form of integrals.展开更多
The growth of a prolate or oblate elliptic micro-void in a fiber reinforced anisotropic incompressible hyper-elastic rectangular thin plate subjected to uniaxial extensions is studied within the framework of finite el...The growth of a prolate or oblate elliptic micro-void in a fiber reinforced anisotropic incompressible hyper-elastic rectangular thin plate subjected to uniaxial extensions is studied within the framework of finite elasticity. Coupling effects of void shape and void size on the growth of the void are paid special attention to. The deformation function of the plate with an isolated elliptic void is given, which is expressed by two parameters to solve the differential equation. The solution is approximately obtained from the minimum potential energy principle. Deformation curves for the void with a wide range of void aspect ratios and the stress distributions on the surface of the void have been obtained by numerical computation. The growth behavior of the void and the characteristics of stress distributions on the surface of the void are captured. The combined effects of void size and void shape on the growth of the void in the thin plate are discussed. The maximum stresses for the void with different sizes and different void aspect ratios are compared.展开更多
The combined effects of void size and void shape on the void growth are studied by using the classical spectrum method. An infinite solid containing an isolated prolate spheroidal void is considered to depict the void...The combined effects of void size and void shape on the void growth are studied by using the classical spectrum method. An infinite solid containing an isolated prolate spheroidal void is considered to depict the void shape effect and the Fleck-Hutchinson phenomenological strain gradient plasticity theory is employed to capture the size effects. It is found that the combined effects of void size and void shape are mainly controlled by the remote stress triaxiality. Based on this, a new size-dependent void growth model similar to the Rice-Tracey model is proposed and an important conclusion about the size-dependent void growth is drawn: the growth rate of the void with radius smaller than a critical radius rc may be ignored. It is interesting that rc. is a material constant independent of the initial void shape and the remote stress triaxiality.展开更多
The effects of voids(void content,void shape and size)on the interlaminar shear strength of[(±45)_(4)/(0,90)/(±45)_(2)]_(S) and [(±45)/0_(4)/(0,90)/0_(2)]_(S) composite laminates were investigated.Speci...The effects of voids(void content,void shape and size)on the interlaminar shear strength of[(±45)_(4)/(0,90)/(±45)_(2)]_(S) and [(±45)/0_(4)/(0,90)/0_(2)]_(S) composite laminates were investigated.Specimens with void contents in the range of 0.2%-8.0%for [(±45)_(4)/(0,90)/(±45)_(2)]_(S) and 0.2%-6.1%for[(±45)/0_(4)/(0,90)/0_(2)]_(S) were fabricated from carbon/epoxy fabric through varying autoclave pressures.The characteristics of the voids were studied by using optical image analysis to explain the interlaminar shear strength results.The influences of voids on the interlaminar shear strength of the two stacking sequences were compared in terms of the void content and size and shape of the void.The effect of voids on the initiation and propagation of interlaminar failure of both stacking sequence composites was found.展开更多
The 3D turbulence k-ε model flow of the steel melt (continuous phase) and the trajectories of individual gas bubbles (dispersed phase) in a continuous casting mold were simulated using an Eulerian-Lagrangian appr...The 3D turbulence k-ε model flow of the steel melt (continuous phase) and the trajectories of individual gas bubbles (dispersed phase) in a continuous casting mold were simulated using an Eulerian-Lagrangian approach. In order to investigate the effect of bubble size distribution, the radii of bubbles are set with an initial value of 0. 1- 2.5 mm which follows the normal distribution. The presented results indicate that, in the submerged entry nozzle (SEN), the distribution of void fraction is only near the wall. Due to the fact that the bubbles motion is only limited to the wall, the deoxidization products have no access to contacting the wall, which prevents clogging. In the mold, the bubbles with a radius of 0. 25--2.5 mm will move to the top surface. Larger bubbles issuing out of the ports will attack the menis- cus and induce the fluid flows upwards in the top surface near the nozzle. It may induce mold powder entrapment into the mold. The bubbles with a radius of 0.1--0.25 mm will move to the zone near the narrow surface and the wide surface. These small bubbles will probably be trapped by the solidification front. Most of the bubbles moving to the narrow surface will flow with the ascending flow, while others will flow with the descending flow.展开更多
Determination of the critical state line(CSL)is important to characterize engineering properties of granular soils.Grain size distribution(GSD)has a significant influence on the location of CSL.The influence of partic...Determination of the critical state line(CSL)is important to characterize engineering properties of granular soils.Grain size distribution(GSD)has a significant influence on the location of CSL.The influence of particle breakage on the CSL is mainly attributed to the change in GSD due to particle breakage.However,GSD has not been properly considered in modeling the CSL with influence of particle breakage.This study aims to propose a quantitative model to determine the CSL considering the effect of GSD.We hypothesize that the change of critical state void ratio with respect to GSD is caused by the same mechanism that influences of the change of minimum void ratio with respect to GSD.Consequently,the particle packing model for minimum void ratio proposed by Chang et al.(2017)is extended to predict critical state void ratio.The developed model is validated by experimental results of CSLs for several types of granular materials.Then the evolution of GSD due to particle breakage is incorporated into the model.The model is further evaluated using the experimental results on rockfill material,which illustrates the applicability of the model in predicting CSL for granular material with particle breakage.展开更多
Waxy crude oil is known for its high wax contents that can potentially result in gelling following sufficient cooling of the transportation line in the subsea bed at offshore fields.The gelling over the entire lines r...Waxy crude oil is known for its high wax contents that can potentially result in gelling following sufficient cooling of the transportation line in the subsea bed at offshore fields.The gelling over the entire lines requires an accurately predicted restart pressure to restart the clogged and idle system.However,the common way of predicting the restart pressure has been reported to result in over-designed and predicted piping parameters.Recent research findings evidenced the formation of voids which would reduce the restart pressure significantly.The study conducted in this paper is aimed at investigating the voids size distribution in gelled crude oil across and along transportation pipelines.Sets of experiments simulating crude oil transportation during both static and dynamic cooling were conducted.The gelled crude oil below the pour point temperature was then scanned using a Magnetic Resonance Imaging(MRI)system to detect the voids formed.The resulting voids at each scanning cross-section were quantified,and their distributions were investigated.It was observed that dynamic cooling had minimal impacts on the voids size difference along the pipeline with the difference in voids areas within 10 mm^(2) to be twice and uniform for the entire flow rates tested.However,voids size in statically cooled waxy crude oil was found to be highly distributed with a maximum of 6 voids size distribution in 10 mm2 ranges.The low-end temperature had the highest size difference while the difference was decreasing with higher end temperatures.This study shows that the voids amount in dynamically cooled waxy crude oil could also be estimated with lower numbers of cross-sectional voids areas.However,the higher cross-sectional voids detection is recommended while estimating voids in statically cooled waxy crude oil.展开更多
基金The project supported by the National Natural Science Foundation of China(20020003023)the Ministry of Education(key grant 0306)
文摘A continuum model of solids with cylindrical microvoids is proposed based on the Taylor dislocation model. The model is an extension of Gurson model in the sense that the void size effect is accounted for. Beside the void volume fraction f, the intrinsic material length l becomes a parameter representing voids since the void size comes into play in the Gurson model. Approximate yield functions in analytic forms are suggested for both solids with cylindrical microvoids and with spherical microvoids. The application to uniaxial tension curves shows a precise agreement between the approximate analytic yield function and the exact parametric form of integrals.
基金supported by the National Natural Science Foundation of China (Nos. 10772104 and 10872045)the Innovation Project of Shanghai Municipal Education Commission (No. 09YZ12)the Shanghai Leading Academic Discipline Project (No. S30106)
文摘The growth of a prolate or oblate elliptic micro-void in a fiber reinforced anisotropic incompressible hyper-elastic rectangular thin plate subjected to uniaxial extensions is studied within the framework of finite elasticity. Coupling effects of void shape and void size on the growth of the void are paid special attention to. The deformation function of the plate with an isolated elliptic void is given, which is expressed by two parameters to solve the differential equation. The solution is approximately obtained from the minimum potential energy principle. Deformation curves for the void with a wide range of void aspect ratios and the stress distributions on the surface of the void have been obtained by numerical computation. The growth behavior of the void and the characteristics of stress distributions on the surface of the void are captured. The combined effects of void size and void shape on the growth of the void in the thin plate are discussed. The maximum stresses for the void with different sizes and different void aspect ratios are compared.
基金The project supported by the National Natural Science Foundation of China(A10102006)the New Century Excellent Talents in Universities of China.
文摘The combined effects of void size and void shape on the void growth are studied by using the classical spectrum method. An infinite solid containing an isolated prolate spheroidal void is considered to depict the void shape effect and the Fleck-Hutchinson phenomenological strain gradient plasticity theory is employed to capture the size effects. It is found that the combined effects of void size and void shape are mainly controlled by the remote stress triaxiality. Based on this, a new size-dependent void growth model similar to the Rice-Tracey model is proposed and an important conclusion about the size-dependent void growth is drawn: the growth rate of the void with radius smaller than a critical radius rc may be ignored. It is interesting that rc. is a material constant independent of the initial void shape and the remote stress triaxiality.
基金Project supported by Harbin Aircraft Industry Co.,Ltd.,China。
文摘The effects of voids(void content,void shape and size)on the interlaminar shear strength of[(±45)_(4)/(0,90)/(±45)_(2)]_(S) and [(±45)/0_(4)/(0,90)/0_(2)]_(S) composite laminates were investigated.Specimens with void contents in the range of 0.2%-8.0%for [(±45)_(4)/(0,90)/(±45)_(2)]_(S) and 0.2%-6.1%for[(±45)/0_(4)/(0,90)/0_(2)]_(S) were fabricated from carbon/epoxy fabric through varying autoclave pressures.The characteristics of the voids were studied by using optical image analysis to explain the interlaminar shear strength results.The influences of voids on the interlaminar shear strength of the two stacking sequences were compared in terms of the void content and size and shape of the void.The effect of voids on the initiation and propagation of interlaminar failure of both stacking sequence composites was found.
基金Item Sponsored by National Natural Science Foundation of China(50874130,50974034)
文摘The 3D turbulence k-ε model flow of the steel melt (continuous phase) and the trajectories of individual gas bubbles (dispersed phase) in a continuous casting mold were simulated using an Eulerian-Lagrangian approach. In order to investigate the effect of bubble size distribution, the radii of bubbles are set with an initial value of 0. 1- 2.5 mm which follows the normal distribution. The presented results indicate that, in the submerged entry nozzle (SEN), the distribution of void fraction is only near the wall. Due to the fact that the bubbles motion is only limited to the wall, the deoxidization products have no access to contacting the wall, which prevents clogging. In the mold, the bubbles with a radius of 0. 25--2.5 mm will move to the top surface. Larger bubbles issuing out of the ports will attack the menis- cus and induce the fluid flows upwards in the top surface near the nozzle. It may induce mold powder entrapment into the mold. The bubbles with a radius of 0.1--0.25 mm will move to the zone near the narrow surface and the wide surface. These small bubbles will probably be trapped by the solidification front. Most of the bubbles moving to the narrow surface will flow with the ascending flow, while others will flow with the descending flow.
基金supported by the National Science Foundation of the United States under a research grant (CMMI-1917238)
文摘Determination of the critical state line(CSL)is important to characterize engineering properties of granular soils.Grain size distribution(GSD)has a significant influence on the location of CSL.The influence of particle breakage on the CSL is mainly attributed to the change in GSD due to particle breakage.However,GSD has not been properly considered in modeling the CSL with influence of particle breakage.This study aims to propose a quantitative model to determine the CSL considering the effect of GSD.We hypothesize that the change of critical state void ratio with respect to GSD is caused by the same mechanism that influences of the change of minimum void ratio with respect to GSD.Consequently,the particle packing model for minimum void ratio proposed by Chang et al.(2017)is extended to predict critical state void ratio.The developed model is validated by experimental results of CSLs for several types of granular materials.Then the evolution of GSD due to particle breakage is incorporated into the model.The model is further evaluated using the experimental results on rockfill material,which illustrates the applicability of the model in predicting CSL for granular material with particle breakage.
文摘Waxy crude oil is known for its high wax contents that can potentially result in gelling following sufficient cooling of the transportation line in the subsea bed at offshore fields.The gelling over the entire lines requires an accurately predicted restart pressure to restart the clogged and idle system.However,the common way of predicting the restart pressure has been reported to result in over-designed and predicted piping parameters.Recent research findings evidenced the formation of voids which would reduce the restart pressure significantly.The study conducted in this paper is aimed at investigating the voids size distribution in gelled crude oil across and along transportation pipelines.Sets of experiments simulating crude oil transportation during both static and dynamic cooling were conducted.The gelled crude oil below the pour point temperature was then scanned using a Magnetic Resonance Imaging(MRI)system to detect the voids formed.The resulting voids at each scanning cross-section were quantified,and their distributions were investigated.It was observed that dynamic cooling had minimal impacts on the voids size difference along the pipeline with the difference in voids areas within 10 mm^(2) to be twice and uniform for the entire flow rates tested.However,voids size in statically cooled waxy crude oil was found to be highly distributed with a maximum of 6 voids size distribution in 10 mm2 ranges.The low-end temperature had the highest size difference while the difference was decreasing with higher end temperatures.This study shows that the voids amount in dynamically cooled waxy crude oil could also be estimated with lower numbers of cross-sectional voids areas.However,the higher cross-sectional voids detection is recommended while estimating voids in statically cooled waxy crude oil.