To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitro...To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitrobenzene(DNB),solvents ligands dimethyl carbonate(DMC) and gamma-butyrolactone(GBL)with void were simulated,using molecular dynamics method and reactive force field.It is found that the CL-20 co-crystals with void defects will form hot spots when impacted,significantly affecting the decomposition of molecules around the void.The degree of molecular fragmentation is relatively low under the reflection velocity of 2 km/s,and the main reactions are the formation of dimer and the shedding of nitro groups.The existence of voids reduces the safety of CL-20 co-crystals,which induced the sensitivity of energetic co-crystals CL-20/TNT and CL-20/DNB to increase more significantly.Detonation has occurred under the reflection velocity of 4 km/s,energetic co-crystals are easier to polymerize than solvent co-crystals,and are not obviously affected by voids.The results show that the energy of the wave decreases after sweeping over the void,which reduces the chemical reaction frequency downstream of the void and affects the detonation performance,especially the solvent co-crystals.展开更多
Voids are one of the major defects in ball grid array (BGA) solder joints due to a large amount of outgassing flux that gets entrapped during reflow. X-ray nondestructive machines are used to make voids visible ...Voids are one of the major defects in ball grid array (BGA) solder joints due to a large amount of outgassing flux that gets entrapped during reflow. X-ray nondestructive machines are used to make voids visible as lighter areas inside the solder joints in X-ray images for detection However, it has always been difficult to analyze this problem automatically because of some challenges such as noise, inconsistent lighting and void-like artifacts. This study realized accurate extraction and automatic a-nalysis of void defects in solder joints by adopting a technical proposal, in which Otsu algorithm was used to segment solder balls and void defects were extracted through opening and closing operations and top-hat transformation in mathematical mor-phology. Experimental results show that the technical proposal mentioned here has good robustness and can be applied in the detection of voids in BGA solder joints.展开更多
The void closure behavior in a central extra-thick plate during the gradient temperature rolling was simulated and a back propagation(BP)neural network model was established.The thermal–mechanical finite element mode...The void closure behavior in a central extra-thick plate during the gradient temperature rolling was simulated and a back propagation(BP)neural network model was established.The thermal–mechanical finite element model of the gradient temperature rolling process was first developed and validated.The prediction error of the model for the rolling force is less than 2.51%,which has provided the feasibility of imbedding a defect in it.Based on the relevant data obtained from the simulation,the BP neural network was used to establish a prediction model for the compression degree of a void defect.After statistical analysis,80%of the data had a hit rate higher than 95%,and the hit rate of all data was higher than 90%,which indicates that the BP neural network can accurately predict the compression degree.Meanwhile,the comparisons between the results with the gradient temperature rolling and uniform temperature rolling,and between the results with the single-pass rolling and multi-pass rolling were discussed,which provides a theoretical reference for developing process parameters in actual production.展开更多
Ball grid arrays (BGAs) have been used in the production of electronic devices/assemblies because of their advantages of small size, high I/O port density, etc. However, BGA voids can degrade the performance of the bo...Ball grid arrays (BGAs) have been used in the production of electronic devices/assemblies because of their advantages of small size, high I/O port density, etc. However, BGA voids can degrade the performance of the board and cause failure. In this paper, a novel blob filter is proposed to automatically detect BGA voids presented in X-ray images. The proposed blob filter uses the local image gradient magnitude and thus is not influenced by image brightness, void position, or component interference. Different sized average box filters are employed to analyze the image in multi-scale, and as a result, the proposed blob filter is robust to void size. Experimental results show that the proposed method obtains void detection accuracy of up to 93.47% while maintaining a low false ratio. It outperforms another recent algorithm based on edge detection by 40.69% with respect to the average detection accuracy, and by 16.91% with respect to the average false ratio.展开更多
Crushing and diffusion welding are two critical healing stages of interior void defects in heavy forgings.The healing result depends on many factors during the forging process,such as stress,temperature,deformation an...Crushing and diffusion welding are two critical healing stages of interior void defects in heavy forgings.The healing result depends on many factors during the forging process,such as stress,temperature,deformation and type of material,while the void diffusion welding condition is still not well known at the present.This paper is concerned with the deformation welding condition of the closed void interface in heavy ingot during the hot forging process.A void crushing experiment is carried out to recognize the microstructure of the closed void interface.According to the healing mechanism at high temperature,a new physical simulation model is setup to study the deformation welding process of the closed void interface based on the theory of atom diffusion and the interface contact mechanics prototype.Compared with the experimental results,the influence of deformation degree,forming temperature and holding time on the welding quality is discussed,and then the deformation welding condition of closed void interface is presented.The proposed condition helps to improve forging technology and product quality.展开更多
The steel-shell concrete immersed tube(SSIT)with the self-compacting concrete(SCC)has been applied in the Shenzhen–Zhongshan Link,and the SSIT is prone to the void defect during the concrete pouring process.This work...The steel-shell concrete immersed tube(SSIT)with the self-compacting concrete(SCC)has been applied in the Shenzhen–Zhongshan Link,and the SSIT is prone to the void defect during the concrete pouring process.This work aims to study the flow behavior of the SCC and investigate the generation and distribution of the void defect in the SSIT,and the computational fluid dynamics(CFD)models are adopted to solve the above problems.To verify the CFD models,the slump test,L-box test,and field test based on Ok.the impact image method are carried out.The effects of the connecting hole spacing,the exhaust hole number,the exhaust hole position and the pouring speed on the flow behavior and the void defects distribution are quantitatively compared.According to the comparison results,the standard compartment with 300 mm connecting hole spacing and 10 exhaust holes is the optimal compartment structure design,and the concrete pouring speed of 15 m^(3)/h is the optimal construction method.This work demonstrates that the CFD model offers a useful way to evaluate the generation and distribution features of the void defects for the steel–concrete–steel structure.展开更多
基金supported by the National Natural Science Foundation of China (22275018)the Project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology)(Grant No.QNKT20-04)。
文摘To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitrobenzene(DNB),solvents ligands dimethyl carbonate(DMC) and gamma-butyrolactone(GBL)with void were simulated,using molecular dynamics method and reactive force field.It is found that the CL-20 co-crystals with void defects will form hot spots when impacted,significantly affecting the decomposition of molecules around the void.The degree of molecular fragmentation is relatively low under the reflection velocity of 2 km/s,and the main reactions are the formation of dimer and the shedding of nitro groups.The existence of voids reduces the safety of CL-20 co-crystals,which induced the sensitivity of energetic co-crystals CL-20/TNT and CL-20/DNB to increase more significantly.Detonation has occurred under the reflection velocity of 4 km/s,energetic co-crystals are easier to polymerize than solvent co-crystals,and are not obviously affected by voids.The results show that the energy of the wave decreases after sweeping over the void,which reduces the chemical reaction frequency downstream of the void and affects the detonation performance,especially the solvent co-crystals.
基金National Science and Technology Major Project of the Ministry of Science And Technology of China(No.2013YQ240803)Shanxi Programs for Science and Technology Development(Nos.20140321010-02,201603D121040-1)Scientific and Technological Innovation Programs of Higher Education Institutions of Shanxi Province(No.2013063)
文摘Voids are one of the major defects in ball grid array (BGA) solder joints due to a large amount of outgassing flux that gets entrapped during reflow. X-ray nondestructive machines are used to make voids visible as lighter areas inside the solder joints in X-ray images for detection However, it has always been difficult to analyze this problem automatically because of some challenges such as noise, inconsistent lighting and void-like artifacts. This study realized accurate extraction and automatic a-nalysis of void defects in solder joints by adopting a technical proposal, in which Otsu algorithm was used to segment solder balls and void defects were extracted through opening and closing operations and top-hat transformation in mathematical mor-phology. Experimental results show that the technical proposal mentioned here has good robustness and can be applied in the detection of voids in BGA solder joints.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1960105,52074187,and 52274388).
文摘The void closure behavior in a central extra-thick plate during the gradient temperature rolling was simulated and a back propagation(BP)neural network model was established.The thermal–mechanical finite element model of the gradient temperature rolling process was first developed and validated.The prediction error of the model for the rolling force is less than 2.51%,which has provided the feasibility of imbedding a defect in it.Based on the relevant data obtained from the simulation,the BP neural network was used to establish a prediction model for the compression degree of a void defect.After statistical analysis,80%of the data had a hit rate higher than 95%,and the hit rate of all data was higher than 90%,which indicates that the BP neural network can accurately predict the compression degree.Meanwhile,the comparisons between the results with the gradient temperature rolling and uniform temperature rolling,and between the results with the single-pass rolling and multi-pass rolling were discussed,which provides a theoretical reference for developing process parameters in actual production.
基金supported by the Dankook University 2010 Funding for Research Institute of Information and Communication Convergence Technology (RICT),Korea
文摘Ball grid arrays (BGAs) have been used in the production of electronic devices/assemblies because of their advantages of small size, high I/O port density, etc. However, BGA voids can degrade the performance of the board and cause failure. In this paper, a novel blob filter is proposed to automatically detect BGA voids presented in X-ray images. The proposed blob filter uses the local image gradient magnitude and thus is not influenced by image brightness, void position, or component interference. Different sized average box filters are employed to analyze the image in multi-scale, and as a result, the proposed blob filter is robust to void size. Experimental results show that the proposed method obtains void detection accuracy of up to 93.47% while maintaining a low false ratio. It outperforms another recent algorithm based on edge detection by 40.69% with respect to the average detection accuracy, and by 16.91% with respect to the average false ratio.
基金the National Natural Science Foundation of China (Nos.50435010 and 51005197)the National Scientific and Technical Supporting Programs of China (No.2007BAF02B12)the Doctor Fund Project of Yanshan University (No.B298)
文摘Crushing and diffusion welding are two critical healing stages of interior void defects in heavy forgings.The healing result depends on many factors during the forging process,such as stress,temperature,deformation and type of material,while the void diffusion welding condition is still not well known at the present.This paper is concerned with the deformation welding condition of the closed void interface in heavy ingot during the hot forging process.A void crushing experiment is carried out to recognize the microstructure of the closed void interface.According to the healing mechanism at high temperature,a new physical simulation model is setup to study the deformation welding process of the closed void interface based on the theory of atom diffusion and the interface contact mechanics prototype.Compared with the experimental results,the influence of deformation degree,forming temperature and holding time on the welding quality is discussed,and then the deformation welding condition of closed void interface is presented.The proposed condition helps to improve forging technology and product quality.
基金supported by the R&D Projects in Key Areas of Guangdong Province(No.20191105).
文摘The steel-shell concrete immersed tube(SSIT)with the self-compacting concrete(SCC)has been applied in the Shenzhen–Zhongshan Link,and the SSIT is prone to the void defect during the concrete pouring process.This work aims to study the flow behavior of the SCC and investigate the generation and distribution of the void defect in the SSIT,and the computational fluid dynamics(CFD)models are adopted to solve the above problems.To verify the CFD models,the slump test,L-box test,and field test based on Ok.the impact image method are carried out.The effects of the connecting hole spacing,the exhaust hole number,the exhaust hole position and the pouring speed on the flow behavior and the void defects distribution are quantitatively compared.According to the comparison results,the standard compartment with 300 mm connecting hole spacing and 10 exhaust holes is the optimal compartment structure design,and the concrete pouring speed of 15 m^(3)/h is the optimal construction method.This work demonstrates that the CFD model offers a useful way to evaluate the generation and distribution features of the void defects for the steel–concrete–steel structure.