Temporary plugging and diversion fracturing(TPDF)is widely used to promote the uniform and complex distribution of multi-clustered hydraulic fractures(HFs)in a horizontal well of the unconventional formations.However,...Temporary plugging and diversion fracturing(TPDF)is widely used to promote the uniform and complex distribution of multi-clustered hydraulic fractures(HFs)in a horizontal well of the unconventional formations.However,the migration behavior of temporary plugging agent(TPA),as a function of the concentration and particle size of TPA and cluster-perforation numbers,etc.,determining the effectiveness of this technique,remains unclear.Therefore,this study conducted innovatively a series of TPDF simulation experiments on transparent polymethyl methacrylate(PMMA)specimens(cubic block of 30 cm×30 cm×30 cm)to explore visually the migration behavior of TPA in multi-clustered HFs in a horizontal well.A laboratory hydraulic sandblasting perforation completion technique was implemented to simulate the multi-cluster perforations.All the distributions of wellbore,perforations,HFs,and TPA can be seen clearly inside the PMMA specimen post the experiment.The results show that there are four characteristic plugging positions for the TPA:mouth of HF,middle of HF,tip of HF,and the intersection of HFs.Small particle size TPA tends to migrate to the fracture tip for plugging,while large particle size TPA tends to plug at the fracture mouth.The migration of the TPA is influenced obviously by the morphology of the fracture wall.A smooth fracture wall is conducive to the migration of the TPA to the far end of HFs,but not conducive to generating the plugging zone and HF diversion.In contrast,a"leaf vein"fracture of rough wall is conducive to generating the plugging layer and the diversion of HFs,but not conducive to the migration of the TPA to the far end of HFs.The migration ability of TPA in a"shell"pattern is intermediate between the two above cases.Increasing TPA concentration can encourage TPA to migrate more quickly to the characteristic plugging position,and thereby to promote the creation of effective plugging and subsequently the multi-stage diversion of the HFs.Nevertheless,excessive concentration may cause the TPA to settle prematurely,affecting the propagation of the HFs to the far end.Increasing the number of clusters to a certain extent can encourage TPA to migrate into the HFs and form plugging,and promote the diversion.An evaluation system for the migration ability of granular TPA has been established,and it was calculated that when there is no plugging expectation target,the comprehensive migration ability of small particle size TPA is stronger than that of large particle size TPA.This research provides theoretical foundation for the optimization of temporary plugging parameters.展开更多
Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have ...Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.展开更多
Tetracycline(TC)is a broad-spectrum antibiotic,and its residues in the environment and food are harmful to human health.Therefore,it is essential to rapidly,sensitively,and conveniently detect TC.In this work,we devel...Tetracycline(TC)is a broad-spectrum antibiotic,and its residues in the environment and food are harmful to human health.Therefore,it is essential to rapidly,sensitively,and conveniently detect TC.In this work,we developed a portable silicon nanoparticles chelated Europium(Ⅲ)-based polyacrylonitrile(Eu-SiNPs/PAN)nanofiber membrane for rapid,sensitive,and convenient detection of TC.The Eu-SiNPs were synthesized with a facile one-pot method.The Eu-SiNPs/PAN nanofiber membrane was fabricated by electrospinning,combining Eu-SiNPs and PAN with three-dimensional porous membrane structures and UV resistance.Both the Eu-SiNPs and the Eu-SiNPs/PAN nanofiber membranes have good selectivity and anti-interference ability towards TC.The combined merits of rapid response,long storage life,easy portability,and naked-eye recognition of TC make the Eu-SiNPs/PAN nanofiber membrane a promising material for convenient TC detection applications.The practicability of these nanofiber membranes was further verified by detecting TC in real samples,such as lake water,drinking water and honey,and achieved quantitative detection.展开更多
基金supported by the National Natural Science Foundation of China Joint Fund for Enterprise Innovation and Development,Enrichment Mechanism and Stereoscopic Development of Shale Oil in Continental Rift Basins(No.U24B6002).
文摘Temporary plugging and diversion fracturing(TPDF)is widely used to promote the uniform and complex distribution of multi-clustered hydraulic fractures(HFs)in a horizontal well of the unconventional formations.However,the migration behavior of temporary plugging agent(TPA),as a function of the concentration and particle size of TPA and cluster-perforation numbers,etc.,determining the effectiveness of this technique,remains unclear.Therefore,this study conducted innovatively a series of TPDF simulation experiments on transparent polymethyl methacrylate(PMMA)specimens(cubic block of 30 cm×30 cm×30 cm)to explore visually the migration behavior of TPA in multi-clustered HFs in a horizontal well.A laboratory hydraulic sandblasting perforation completion technique was implemented to simulate the multi-cluster perforations.All the distributions of wellbore,perforations,HFs,and TPA can be seen clearly inside the PMMA specimen post the experiment.The results show that there are four characteristic plugging positions for the TPA:mouth of HF,middle of HF,tip of HF,and the intersection of HFs.Small particle size TPA tends to migrate to the fracture tip for plugging,while large particle size TPA tends to plug at the fracture mouth.The migration of the TPA is influenced obviously by the morphology of the fracture wall.A smooth fracture wall is conducive to the migration of the TPA to the far end of HFs,but not conducive to generating the plugging zone and HF diversion.In contrast,a"leaf vein"fracture of rough wall is conducive to generating the plugging layer and the diversion of HFs,but not conducive to the migration of the TPA to the far end of HFs.The migration ability of TPA in a"shell"pattern is intermediate between the two above cases.Increasing TPA concentration can encourage TPA to migrate more quickly to the characteristic plugging position,and thereby to promote the creation of effective plugging and subsequently the multi-stage diversion of the HFs.Nevertheless,excessive concentration may cause the TPA to settle prematurely,affecting the propagation of the HFs to the far end.Increasing the number of clusters to a certain extent can encourage TPA to migrate into the HFs and form plugging,and promote the diversion.An evaluation system for the migration ability of granular TPA has been established,and it was calculated that when there is no plugging expectation target,the comprehensive migration ability of small particle size TPA is stronger than that of large particle size TPA.This research provides theoretical foundation for the optimization of temporary plugging parameters.
文摘Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.
基金supported by the Natural Science Foundation of Tianjin(Nos.18JCQNJC72400 and 22JCQNJC01510).
文摘Tetracycline(TC)is a broad-spectrum antibiotic,and its residues in the environment and food are harmful to human health.Therefore,it is essential to rapidly,sensitively,and conveniently detect TC.In this work,we developed a portable silicon nanoparticles chelated Europium(Ⅲ)-based polyacrylonitrile(Eu-SiNPs/PAN)nanofiber membrane for rapid,sensitive,and convenient detection of TC.The Eu-SiNPs were synthesized with a facile one-pot method.The Eu-SiNPs/PAN nanofiber membrane was fabricated by electrospinning,combining Eu-SiNPs and PAN with three-dimensional porous membrane structures and UV resistance.Both the Eu-SiNPs and the Eu-SiNPs/PAN nanofiber membranes have good selectivity and anti-interference ability towards TC.The combined merits of rapid response,long storage life,easy portability,and naked-eye recognition of TC make the Eu-SiNPs/PAN nanofiber membrane a promising material for convenient TC detection applications.The practicability of these nanofiber membranes was further verified by detecting TC in real samples,such as lake water,drinking water and honey,and achieved quantitative detection.