期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
FunHoP:Enhanced Visualization and Analysis of Functionally Homologous Proteins in Complex Metabolic Networks
1
作者 Kjersti Rise May-Britt Tessem +1 位作者 Finn Drablos Morten B.Rye 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2021年第5期848-859,共12页
Cytoscape is often used for visualization and analysis of metabolic pathways.For example,based on KEGG data,a reader for KEGG Markup Language(KGML)is used to load files into Cytoscape.However,although multiple genes c... Cytoscape is often used for visualization and analysis of metabolic pathways.For example,based on KEGG data,a reader for KEGG Markup Language(KGML)is used to load files into Cytoscape.However,although multiple genes can be responsible for the same reaction,the KGMLreader KEGGScape only presents the first listed gene in a network node for a given reaction.This can lead to incorrect interpretations of the pathways.Our new method,FunHoP,shows all possible genes in each node,making the pathways more complete.FunHoP collapses all genes in a node into one measurement using read counts from RNA-seq.Assuming that activity for an enzymatic reaction mainly depends upon the gene with the highest number of reads,and weighting the reads on gene length and ratio,a new expression value is calculated for the node as a whole.Differential expression at node level is then applied to the networks.Using prostate cancer as model,we integrate RNA-seq data from two patient cohorts with metabolism data from literature.Here we show that FunHoP gives more consistent pathways that are easier to interpret biologically.Code and documentation for running FunHoP can be found at https://github.com/kjerstirise/FunHoP. 展开更多
关键词 Homologous proteins Metabolic network Pathway visualization and analysis RNA-SEQ KEGG Cytoscape
原文传递
Integration system research and development for three-dimensional laser scanning information visualization in goaf 被引量:2
2
作者 罗周全 黄俊杰 +2 位作者 罗贞焱 汪伟 秦亚光 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1985-1994,共10页
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo... An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable. 展开更多
关键词 GOAF laser scanning visualization integration system 1 Introduction The goaf formed through underground mining of mineral resources is one of the main disaster sources threatening mine safety production [1 2]. Effective implementation of goaf detection and accurate acquisition of its spatial characteristics including the three-dimensional morphology the spatial position as well as the actual boundary and volume are important basis to analyze predict and control disasters caused by goaf. In recent years three-dimensional laser scanning technology has been effectively applied in goaf detection [3 4]. Large quantities of point cloud data that are acquired for goaf by means of the three-dimensional laser scanning system are processed relying on relevant engineering software to generate a three-dimensional model for goaf. Then a general modeling analysis and processing instrument are introduced to perform subsequent three-dimensional analysis and calculation [5 6]. Moreover related development is also carried out in fields such as three-dimensional detection and visualization of hazardous goaf detection and analysis of unstable failures in goaf extraction boundary acquisition in stope visualized computation of damage index aided design for pillar recovery and three-dimensional detection
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部