气候变化和人类活动对水文循环产生了显著影响,尤其是在干旱半干旱区.为探究变化环境下典型半干旱生态脆弱区毛乌素沙地水循环演变特征,利用WEP-L(water and energy transfer processes in large river basin)地表水模型和Visual MODFLO...气候变化和人类活动对水文循环产生了显著影响,尤其是在干旱半干旱区.为探究变化环境下典型半干旱生态脆弱区毛乌素沙地水循环演变特征,利用WEP-L(water and energy transfer processes in large river basin)地表水模型和Visual MODFLOW(visual modular finite difference groundwater flow)地下水模型对毛乌素沙地水循环过程进行分布式模拟,基于白家川水文站实测月径流量和监测井地下水位数据进行模型参数率定与验证.结果表明,地表水模型率定期和验证期的模拟月径流量和实测月径流量的R2都在0.5以上,模拟的监测井地下水位和实测地下水位趋势较为一致,相关系数达到0.56以上.采用偏差校正的CMIP6多模式集合气候变化情景及当地取用水情景驱动地表水-地下水耦合模型,量化了变化环境下毛乌素沙地2021-2040年关键水循环要素变化特征.结果表明,未来情景下毛乌素沙地年降水量和年蒸散发量的平均增幅分别为8.0%和7.4%,年径流深呈现逐渐减少的趋势,2040年末地下水位相较于2021年末下降了约1 m.未来2种用水情景下区域地下水总补给量与排泄量的差值分别为-1.82亿、-0.97亿m^(3)·a^(-1),地表径流总量与地表用水量的差值分别为1.83亿、2.29亿m^(3)·a^(-1),地下水资源开发利用将面临更大挑战.研究成果可为毛乌素沙地区域水资源规划与管理提供科学支撑.展开更多
Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have ...Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.展开更多
【目的】针对风电法兰分类细、规格多、直径大、孔数多,导致多孔加工坐标计算量大、输入效率低,且极坐标、旋转坐标及宏程序、二次开发等加工方案难以满足法兰生产企业实际生产需求的问题,提出一种高效解决方案。【方法】基于Visual Stu...【目的】针对风电法兰分类细、规格多、直径大、孔数多,导致多孔加工坐标计算量大、输入效率低,且极坐标、旋转坐标及宏程序、二次开发等加工方案难以满足法兰生产企业实际生产需求的问题,提出一种高效解决方案。【方法】基于Visual Studio 2022开发平台,开发了一款高效实用、能灵活快速生成螺栓孔加工程序的专用CAM系统。该系统应用了模块化设计思路,把零件信息、加工参数等按相应模块独立处理,有利于系统根据法兰设计标准的变化而及时调整,自动生成不同规格的风电法兰螺栓孔加工程序。【结果】所开发的风电法兰螺栓孔加工CAM系统,实现了多孔加工程序的快速自动生成,显著降低了数控编程员的劳动强度,提高了法兰孔加工生产效率。【结论】未来可进一步对AutoCAD、NX平台进行二次开发,借助平台强大的二维三维图形设计基础,开发基于法兰零件的集设计制造为一体的中小型CAD/CAM系统,以满足企业不断发展的生产管理需求。展开更多
Improvements in surgical techniques have led to 90% success in the surgical repair of rhegmatogenous retinal detachment(RRD).However,anatomical reattachment of the retina does not ensure complete recovery of visual fu...Improvements in surgical techniques have led to 90% success in the surgical repair of rhegmatogenous retinal detachment(RRD).However,anatomical reattachment of the retina does not ensure complete recovery of visual function.The incidence of metamorphopsia remains the most common postoperative complaint,from 24% to 88.6%.Currently,the risk factors of metamorphopsia are categorized into macular involvement,retinal shift,outer retinal folds,subretinal fluid,secondary epiretinal membrane,outer retinal layer damage,and surgical approach.The associations of metamorphopsia with postoperative best-corrected visual acuity and postoperative vision-related quality of life were still controversial.The most popular methods for assessment of metamorphopsia remain the Amsler grid and M-Charts.Most treatments cannot progress beyond the management of negative visual sensations,through methods such as occlusion therapy and aniseikonia-correcting spectacles.The main treatment approach involves RRD prevention and the management of risk factors that can lead to postoperative metamorphopsia after RRD repair.Additional research concerning metamorphopsia treatment,further upgrades of auxiliary inspection methods,and more accurate microstructural assessments are needed to address this common complication.展开更多
BACKGROUND Esophageal and gastric variceal bleeding is a catastrophic complication of portal hypertension,most commonly caused by cirrhosis of various etiologies.Although a considerable body of research has been condu...BACKGROUND Esophageal and gastric variceal bleeding is a catastrophic complication of portal hypertension,most commonly caused by cirrhosis of various etiologies.Although a considerable body of research has been conducted in this area,the complexity of the disease and the lack of standardized treatment strategies have led to fragmented findings,insufficient information,and a lack of systematic investigation.Bibliometric analysis can help clarify research trends,identify core topics,and reveal potential future directions.Therefore,this study aims to use bibliometric methods to conduct an in-depth exploration of research progress in this field,with the expectation of providing new insights for both clinical practice and scientific research.AIM To evaluate research trends and advancements in esophagogastric variceal bleeding(EGVB)over the past twenty years.METHODS Relevant publications on EGVB were retrieved from the Web of Science Core Collection.VOSviewer,Pajek,CiteSpace,and the bibliometrix package were then employed to perform bibliometric visualizations of publication volume,countries,institutions,journals,authors,keywords,and citation counts.RESULTS The analysis focused on original research articles and review papers.From 2004 to 2023,a total of 2097 records on EGVB were retrieved.The number of relevant publications has increased significantly over the past two decades,especially in China and the United States.The leading contributors in this field,in terms of countries,institutions,authors,and journals,were China,Assistance Publique-Hôpitaux de Paris,Bosch Jaime,and World Journal of Gastroenterology,respectively.Core keywords in this field include portal hypertension,management,liver cirrhosis,risk,prevention,and diagnosis.Future research directions may focus on optimizing diagnostic methods,personalized treatment,and multidisciplinary collaboration.CONCLUSION Using bibliometric methods,this study reveals the developmental trajectory and trends in research on EGVB,underscoring risk assessment and diagnostic optimization as the core areas of current focus.The study provides an innovative and systematic perspective for this field,indicating that future research could center on multidisciplinary collaboration,personalized treatment approaches,and the development of new diagnostic tools.Moreover,this work offers practical research directions for both the academic community and clinical practice,driving continued advancement in this domain.展开更多
The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology play...The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2, MG-SLAM incorporates a dynamic target detection process that enables the detection of both known and unknown moving objects. In this process, a separate semantic segmentation thread is required to segment dynamic target instances, and the Mask R-CNN algorithm is applied on the Graphics Processing Unit (GPU) to accelerate segmentation. To reduce computational cost, only key frames are segmented to identify known dynamic objects. Additionally, a multi-view geometry method is adopted to detect unknown moving objects. The results demonstrate that MG-SLAM achieves higher precision, with an improvement from 0.2730 m to 0.0135 m in precision. Moreover, the processing time required by MG-SLAM is significantly reduced compared to other dynamic scene SLAM algorithms, which illustrates its efficacy in locating objects in dynamic scenes.展开更多
Traditional Chinese medicine(TCM)serves as a treasure trove of ancient knowledge,holding a crucial position in the medical field.However,the exploration of TCM's extensive information has been hindered by challeng...Traditional Chinese medicine(TCM)serves as a treasure trove of ancient knowledge,holding a crucial position in the medical field.However,the exploration of TCM's extensive information has been hindered by challenges related to data standardization,completeness,and accuracy,primarily due to the decen-tralized distribution of TCM resources.To address these issues,we developed a platform for TCM knowledge discovery(TCMKD,https://cbcb.cdutcm.edu.cn/TCMKD/).Seven types of data,including syndromes,formulas,Chinese patent drugs(CPDs),Chinese medicinal materials(CMMs),ingredients,targets,and diseases,were manually proofread and consolidated within TCMKD.To strengthen the integration of TCM with modern medicine,TCMKD employs analytical methods such as TCM data mining,enrichment analysis,and network localization and separation.These tools help elucidate the molecular-level commonalities between TCM and contemporary scientific insights.In addition to its analytical capabilities,a quick question and answer(Q&A)system is also embedded within TCMKD to query the database efficiently,thereby improving the interactivity of the platform.The platform also provides a TCM text annotation tool,offering a simple and efficient method for TCM text mining.Overall,TCMKD not only has the potential to become a pivotal repository for TCM,delving into the pharmaco-logical foundations of TCM treatments,but its flexible embedded tools and algorithms can also be applied to the study of other traditional medical systems,extending beyond just TCM.展开更多
Rapid diagnosis of Salmonella is crucial for the effective control of food safety incidents, especially in regions with poor hygiene conditions. Polymerase chain reaction(PCR), as a promising tool for Salmonella detec...Rapid diagnosis of Salmonella is crucial for the effective control of food safety incidents, especially in regions with poor hygiene conditions. Polymerase chain reaction(PCR), as a promising tool for Salmonella detection, is facing a lack of simple and fast sensing methods that are compatible with field applications in resource-limited areas. In this work, we developed a sensing approach to identify PCR-amplified Salmonella genomic DNA with the naked eye in a snapshot. Based on the ratiometric fiuorescence signals from SYBR Green Ⅰ and Hydroxyl naphthol blue, positive samples stood out from negative ones with a distinct color pattern under UV exposure. The proposed sensing scheme enabled highly specific identification of Salmonella with a detection limit at the single-copy level. Also, as a supplement to the intuitive naked-eye visualization results, numerical analysis of the colored images was available with a smartphone app to extract RGB values from colored images. This work provides a simple, rapid, and user-friendly solution for PCR identification, which promises great potential in molecular diagnosis of Salmonella and other pathogens in field.展开更多
文摘气候变化和人类活动对水文循环产生了显著影响,尤其是在干旱半干旱区.为探究变化环境下典型半干旱生态脆弱区毛乌素沙地水循环演变特征,利用WEP-L(water and energy transfer processes in large river basin)地表水模型和Visual MODFLOW(visual modular finite difference groundwater flow)地下水模型对毛乌素沙地水循环过程进行分布式模拟,基于白家川水文站实测月径流量和监测井地下水位数据进行模型参数率定与验证.结果表明,地表水模型率定期和验证期的模拟月径流量和实测月径流量的R2都在0.5以上,模拟的监测井地下水位和实测地下水位趋势较为一致,相关系数达到0.56以上.采用偏差校正的CMIP6多模式集合气候变化情景及当地取用水情景驱动地表水-地下水耦合模型,量化了变化环境下毛乌素沙地2021-2040年关键水循环要素变化特征.结果表明,未来情景下毛乌素沙地年降水量和年蒸散发量的平均增幅分别为8.0%和7.4%,年径流深呈现逐渐减少的趋势,2040年末地下水位相较于2021年末下降了约1 m.未来2种用水情景下区域地下水总补给量与排泄量的差值分别为-1.82亿、-0.97亿m^(3)·a^(-1),地表径流总量与地表用水量的差值分别为1.83亿、2.29亿m^(3)·a^(-1),地下水资源开发利用将面临更大挑战.研究成果可为毛乌素沙地区域水资源规划与管理提供科学支撑.
文摘Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.
文摘【目的】针对风电法兰分类细、规格多、直径大、孔数多,导致多孔加工坐标计算量大、输入效率低,且极坐标、旋转坐标及宏程序、二次开发等加工方案难以满足法兰生产企业实际生产需求的问题,提出一种高效解决方案。【方法】基于Visual Studio 2022开发平台,开发了一款高效实用、能灵活快速生成螺栓孔加工程序的专用CAM系统。该系统应用了模块化设计思路,把零件信息、加工参数等按相应模块独立处理,有利于系统根据法兰设计标准的变化而及时调整,自动生成不同规格的风电法兰螺栓孔加工程序。【结果】所开发的风电法兰螺栓孔加工CAM系统,实现了多孔加工程序的快速自动生成,显著降低了数控编程员的劳动强度,提高了法兰孔加工生产效率。【结论】未来可进一步对AutoCAD、NX平台进行二次开发,借助平台强大的二维三维图形设计基础,开发基于法兰零件的集设计制造为一体的中小型CAD/CAM系统,以满足企业不断发展的生产管理需求。
文摘Improvements in surgical techniques have led to 90% success in the surgical repair of rhegmatogenous retinal detachment(RRD).However,anatomical reattachment of the retina does not ensure complete recovery of visual function.The incidence of metamorphopsia remains the most common postoperative complaint,from 24% to 88.6%.Currently,the risk factors of metamorphopsia are categorized into macular involvement,retinal shift,outer retinal folds,subretinal fluid,secondary epiretinal membrane,outer retinal layer damage,and surgical approach.The associations of metamorphopsia with postoperative best-corrected visual acuity and postoperative vision-related quality of life were still controversial.The most popular methods for assessment of metamorphopsia remain the Amsler grid and M-Charts.Most treatments cannot progress beyond the management of negative visual sensations,through methods such as occlusion therapy and aniseikonia-correcting spectacles.The main treatment approach involves RRD prevention and the management of risk factors that can lead to postoperative metamorphopsia after RRD repair.Additional research concerning metamorphopsia treatment,further upgrades of auxiliary inspection methods,and more accurate microstructural assessments are needed to address this common complication.
基金Supported by the National Natural Science Foundation of China,No.81874390 and No.81573948Shanghai Natural Science Foundation,No.21ZR1464100+1 种基金Science and Technology Innovation Action Plan of Shanghai Science and Technology Commission,No.22S11901700the Shanghai Key Specialty of Traditional Chinese Clinical Medicine,No.shslczdzk01201.
文摘BACKGROUND Esophageal and gastric variceal bleeding is a catastrophic complication of portal hypertension,most commonly caused by cirrhosis of various etiologies.Although a considerable body of research has been conducted in this area,the complexity of the disease and the lack of standardized treatment strategies have led to fragmented findings,insufficient information,and a lack of systematic investigation.Bibliometric analysis can help clarify research trends,identify core topics,and reveal potential future directions.Therefore,this study aims to use bibliometric methods to conduct an in-depth exploration of research progress in this field,with the expectation of providing new insights for both clinical practice and scientific research.AIM To evaluate research trends and advancements in esophagogastric variceal bleeding(EGVB)over the past twenty years.METHODS Relevant publications on EGVB were retrieved from the Web of Science Core Collection.VOSviewer,Pajek,CiteSpace,and the bibliometrix package were then employed to perform bibliometric visualizations of publication volume,countries,institutions,journals,authors,keywords,and citation counts.RESULTS The analysis focused on original research articles and review papers.From 2004 to 2023,a total of 2097 records on EGVB were retrieved.The number of relevant publications has increased significantly over the past two decades,especially in China and the United States.The leading contributors in this field,in terms of countries,institutions,authors,and journals,were China,Assistance Publique-Hôpitaux de Paris,Bosch Jaime,and World Journal of Gastroenterology,respectively.Core keywords in this field include portal hypertension,management,liver cirrhosis,risk,prevention,and diagnosis.Future research directions may focus on optimizing diagnostic methods,personalized treatment,and multidisciplinary collaboration.CONCLUSION Using bibliometric methods,this study reveals the developmental trajectory and trends in research on EGVB,underscoring risk assessment and diagnostic optimization as the core areas of current focus.The study provides an innovative and systematic perspective for this field,indicating that future research could center on multidisciplinary collaboration,personalized treatment approaches,and the development of new diagnostic tools.Moreover,this work offers practical research directions for both the academic community and clinical practice,driving continued advancement in this domain.
基金funded by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(grant number 22KJD440001)Changzhou Science&Technology Program(grant number CJ20220232).
文摘The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2, MG-SLAM incorporates a dynamic target detection process that enables the detection of both known and unknown moving objects. In this process, a separate semantic segmentation thread is required to segment dynamic target instances, and the Mask R-CNN algorithm is applied on the Graphics Processing Unit (GPU) to accelerate segmentation. To reduce computational cost, only key frames are segmented to identify known dynamic objects. Additionally, a multi-view geometry method is adopted to detect unknown moving objects. The results demonstrate that MG-SLAM achieves higher precision, with an improvement from 0.2730 m to 0.0135 m in precision. Moreover, the processing time required by MG-SLAM is significantly reduced compared to other dynamic scene SLAM algorithms, which illustrates its efficacy in locating objects in dynamic scenes.
基金supported by Natural Science Foundation of Sichuan,China(Grant No.:2024ZDZX0019).
文摘Traditional Chinese medicine(TCM)serves as a treasure trove of ancient knowledge,holding a crucial position in the medical field.However,the exploration of TCM's extensive information has been hindered by challenges related to data standardization,completeness,and accuracy,primarily due to the decen-tralized distribution of TCM resources.To address these issues,we developed a platform for TCM knowledge discovery(TCMKD,https://cbcb.cdutcm.edu.cn/TCMKD/).Seven types of data,including syndromes,formulas,Chinese patent drugs(CPDs),Chinese medicinal materials(CMMs),ingredients,targets,and diseases,were manually proofread and consolidated within TCMKD.To strengthen the integration of TCM with modern medicine,TCMKD employs analytical methods such as TCM data mining,enrichment analysis,and network localization and separation.These tools help elucidate the molecular-level commonalities between TCM and contemporary scientific insights.In addition to its analytical capabilities,a quick question and answer(Q&A)system is also embedded within TCMKD to query the database efficiently,thereby improving the interactivity of the platform.The platform also provides a TCM text annotation tool,offering a simple and efficient method for TCM text mining.Overall,TCMKD not only has the potential to become a pivotal repository for TCM,delving into the pharmaco-logical foundations of TCM treatments,but its flexible embedded tools and algorithms can also be applied to the study of other traditional medical systems,extending beyond just TCM.
基金supported by the Macao Science and Technology Development Fund(FDCT)(Nos.FDCT 0029/2021/A1,FDCT0002/2021/AKP,004/2023/SKL,0036/2021/APD)University of Macao(No.MYRG-GRG2023-00034-IME,SRG2024-00057IME)+2 种基金Dr.Stanley Ho Medical Development Foundation(No.SHMDF-OIRFS/2024/001)Zhuhai Huafa Group(No.HF-006-2021)Guangdong Science and Technology Department(No.2022A0505030022)。
文摘Rapid diagnosis of Salmonella is crucial for the effective control of food safety incidents, especially in regions with poor hygiene conditions. Polymerase chain reaction(PCR), as a promising tool for Salmonella detection, is facing a lack of simple and fast sensing methods that are compatible with field applications in resource-limited areas. In this work, we developed a sensing approach to identify PCR-amplified Salmonella genomic DNA with the naked eye in a snapshot. Based on the ratiometric fiuorescence signals from SYBR Green Ⅰ and Hydroxyl naphthol blue, positive samples stood out from negative ones with a distinct color pattern under UV exposure. The proposed sensing scheme enabled highly specific identification of Salmonella with a detection limit at the single-copy level. Also, as a supplement to the intuitive naked-eye visualization results, numerical analysis of the colored images was available with a smartphone app to extract RGB values from colored images. This work provides a simple, rapid, and user-friendly solution for PCR identification, which promises great potential in molecular diagnosis of Salmonella and other pathogens in field.