【目的】煤矿井下普遍存在低照度、弱纹理和结构化的特征退化场景,导致视觉SLAM(visual simultaneous localization and mapping)系统面临有效特征不足或误匹配率高的问题,严重制约了其定位的准确性和鲁棒性。【方法】提出一种基于边缘...【目的】煤矿井下普遍存在低照度、弱纹理和结构化的特征退化场景,导致视觉SLAM(visual simultaneous localization and mapping)系统面临有效特征不足或误匹配率高的问题,严重制约了其定位的准确性和鲁棒性。【方法】提出一种基于边缘感知增强的视觉SLAM方法。首先,构建了边缘感知约束的低光图像增强模块。通过自适应尺度的梯度域引导滤波器优化Retinex算法,以获得纹理清晰光照均匀的图像,从而显著提升了在低光照和不均匀光照条件下特征提取性能。其次,在视觉里程计中构建了边缘感知增强的特征提取和匹配模块,通过点线特征融合策略有效增强了弱纹理和结构化场景中特征的可检测性和匹配准确性。具体使用边缘绘制线特征提取算法(edge drawing lines,EDLines)提取线特征,定向FAST和旋转BRIEF点特征提取算法(oriented fast and rotated brief,ORB)提取点特征,并利用基于网格运动统计(grid-based motion statistics,GMS)和比值测试匹配算法进行精确匹配。最后,将该方法与ORB-SLAM2、ORB-SLAM3在TUM数据集和煤矿井下实景数据集上进行了全面实验验证,涵盖图像增强、特征匹配和定位等多个环节。【结果和结论】结果表明:(1)在TUM数据集上的测试结果显示,所提方法与ORB-SLAM2相比,绝对轨迹误差、相对轨迹误差的均方根误差分别降低了4%~38.46%、8.62%~50%;与ORB-SLAM3相比,绝对轨迹误差、相对轨迹误差的均方根误差分别降低了0~61.68%、3.63%~47.05%。(2)在煤矿井下实景实验中,所提方法的定位轨迹更接近于相机运动参考轨迹。(3)有效提高了视觉SLAM在煤矿井下特征退化场景中的准确性和鲁棒性,为视觉SLAM技术在煤矿井下的应用提供了技术解决方案。研究面向井下特征退化场景的视觉SLAM方法,对于推动煤矿井下移动式装备机器人化具有重要意义。展开更多
煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast...煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast and Rotated Brief)-SLAM3算法的煤矿井下移动机器人双目视觉定位算法SL-SLAM。针对光照变化场景,在前端使用光照稳定性的Super-Point特征点提取网络替换原始ORB特征点提取算法,并提出一种特征点网格限定法,有效剔除无效特征点区域,增加位姿估计稳定性。针对低纹理场景,在前端引入稳定的线段检测器LSD(Line Segment Detector)线特征提取算法,并提出一种点线联合算法,按照特征点网格对线特征进行分组,根据特征点的匹配结果进行线特征匹配,降低线特征匹配复杂度,节约位姿估计时间。构建了点特征和线特征的重投影误差模型,在线特征残差模型中添加角度约束,通过点特征和线特征的位姿增量雅可比矩阵建立点线特征重投影误差统一成本函数。局部建图线程使用ORB-SLAM3经典的局部优化方法调整点、线特征和关键帧位姿,并在后端线程中进行回环修正、子图融合和全局捆绑调整BA(Bundle Adjustment)。在EuRoC数据集上的试验结果表明,SL-SLAM的绝对位姿误差APE(Absolute Pose Error)指标优于其他对比算法,并取得了与真值最接近的轨迹预测结果:均方根误差相较于ORB-SLAM3降低了17.3%。在煤矿井下模拟场景中的试验结果表明,SL-SLAM能适应光照变化和低纹理场景,可以满足煤矿井下移动机器人的定位精度和稳定性要求。展开更多
为提升自动驾驶车辆在多车道行驶与作业时的道路环境感知能力,提出了自动驾驶环境下车道级雷视融合方法 LLV-SLAM(lane-level LiDAR-visual fusion SLAM),并构建了适用于雷视融合的实时定位与建图算法(simultaneous localization and ma...为提升自动驾驶车辆在多车道行驶与作业时的道路环境感知能力,提出了自动驾驶环境下车道级雷视融合方法 LLV-SLAM(lane-level LiDAR-visual fusion SLAM),并构建了适用于雷视融合的实时定位与建图算法(simultaneous localization and mapping,SLAM)。首先,在视觉特征点提取的基础上引入直方图均衡化,并利用激光雷达获取特征点深度信息,通过视觉特征跟踪以提升SLAM系统鲁棒性。其次,利用视觉关键帧信息对激光点云进行运动畸变校正,并将LeGO-LOAM(lightweight and groud-optimized lidar odometry and mapping)融入视觉ORBSLAM2(oriented FAST and rotated BRIEF SLAM2)以增强闭环检测与矫正性能,降低系统累计误差。最后,将视觉图像所获取的位姿进行坐标转换作为激光里程计的位姿初值,辅助激光雷达SLAM进行三维场景重建。实验结果表明:相比于传统的SLAM方法,融合后的LLV-SLAM方法平均定位时延减少了41.61%;在x、y、z方向上的平均定位误差分别减少了34.63%、38.16%、24.09%;在滚转角、俯仰角、偏航角方向上的平均旋转误差减少了40.8%、37.52%、39.5%。LLV-SLAM算法有效抑制了LeGO-LOAM算法的尺度漂移,实时性和鲁棒性有显著提升,能够满足自动驾驶车辆对多车道道路环境的感知需要。展开更多
水下同步定位与建图(Simultaneous Localization and Mapping,SLAM)技术使水下机器人能在未知水下环境中同时进行自我定位和环境地图构建,对海洋学研究、海底资源勘探等领域具有重要意义。本文综述了水下视觉SLAM技术最新研究进展、挑...水下同步定位与建图(Simultaneous Localization and Mapping,SLAM)技术使水下机器人能在未知水下环境中同时进行自我定位和环境地图构建,对海洋学研究、海底资源勘探等领域具有重要意义。本文综述了水下视觉SLAM技术最新研究进展、挑战与解决方案及未来研究方向,梳理了水下视觉SLAM的关键理论。水下环境的复杂性,如光线衰减、散射和水流影响,为水下SLAM的研究带来挑战。本文分析了水下视觉SLAM的最新研究进展,包括多传感器融合、深度学习技术及优化算法的应用,这些技术提高了水下SLAM系统的鲁棒性和精度。同时,本文还探讨了水下SLAM技术面临的主要挑战,并提出了可能的解决方案,如提高传感器数据的准确性、增强数据融合算法的实时性和鲁棒性、改进特征提取与匹配方法,以及提升定位与建图算法的精度和稳定性。最后,本文对水下SLAM的未来研究方向进行了展望,包括新型传感器技术、人工智能技术的应用和水下多机器人协同SLAM的发展,旨在提供该领域科研与技术发展的整体视角。展开更多
视觉即时定位与建图(visual simultaneous localization and mapping,VSLAM)技术利用视觉传感器分析图像信息,使机器人在未知环境中实现自主定位和实时三维地图构建,是机器人导航和自动驾驶等任务的关键。为了给研究人员提供有价值的参...视觉即时定位与建图(visual simultaneous localization and mapping,VSLAM)技术利用视觉传感器分析图像信息,使机器人在未知环境中实现自主定位和实时三维地图构建,是机器人导航和自动驾驶等任务的关键。为了给研究人员提供有价值的参考,梳理了VSLAM的研究现状和最新进展。首先,深入探讨了机器人视觉SLAM算法,根据不同的传感器类型,概述了六种主流的视觉SLAM算法。对这些算法的基本原理进行系统分析,并对其中的经典算法进行了精炼总结。进一步地,将视觉SLAM算法分类为基于特征、基于直接法和基于学习的算法三大类,并详细探讨了各自的优缺点。最后,展望了视觉SLAM技术未来的发展方向,重点关注了深度学习、多传感器融合及实时性能优化等关键研究领域。展开更多
文摘【目的】煤矿井下普遍存在低照度、弱纹理和结构化的特征退化场景,导致视觉SLAM(visual simultaneous localization and mapping)系统面临有效特征不足或误匹配率高的问题,严重制约了其定位的准确性和鲁棒性。【方法】提出一种基于边缘感知增强的视觉SLAM方法。首先,构建了边缘感知约束的低光图像增强模块。通过自适应尺度的梯度域引导滤波器优化Retinex算法,以获得纹理清晰光照均匀的图像,从而显著提升了在低光照和不均匀光照条件下特征提取性能。其次,在视觉里程计中构建了边缘感知增强的特征提取和匹配模块,通过点线特征融合策略有效增强了弱纹理和结构化场景中特征的可检测性和匹配准确性。具体使用边缘绘制线特征提取算法(edge drawing lines,EDLines)提取线特征,定向FAST和旋转BRIEF点特征提取算法(oriented fast and rotated brief,ORB)提取点特征,并利用基于网格运动统计(grid-based motion statistics,GMS)和比值测试匹配算法进行精确匹配。最后,将该方法与ORB-SLAM2、ORB-SLAM3在TUM数据集和煤矿井下实景数据集上进行了全面实验验证,涵盖图像增强、特征匹配和定位等多个环节。【结果和结论】结果表明:(1)在TUM数据集上的测试结果显示,所提方法与ORB-SLAM2相比,绝对轨迹误差、相对轨迹误差的均方根误差分别降低了4%~38.46%、8.62%~50%;与ORB-SLAM3相比,绝对轨迹误差、相对轨迹误差的均方根误差分别降低了0~61.68%、3.63%~47.05%。(2)在煤矿井下实景实验中,所提方法的定位轨迹更接近于相机运动参考轨迹。(3)有效提高了视觉SLAM在煤矿井下特征退化场景中的准确性和鲁棒性,为视觉SLAM技术在煤矿井下的应用提供了技术解决方案。研究面向井下特征退化场景的视觉SLAM方法,对于推动煤矿井下移动式装备机器人化具有重要意义。
文摘煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast and Rotated Brief)-SLAM3算法的煤矿井下移动机器人双目视觉定位算法SL-SLAM。针对光照变化场景,在前端使用光照稳定性的Super-Point特征点提取网络替换原始ORB特征点提取算法,并提出一种特征点网格限定法,有效剔除无效特征点区域,增加位姿估计稳定性。针对低纹理场景,在前端引入稳定的线段检测器LSD(Line Segment Detector)线特征提取算法,并提出一种点线联合算法,按照特征点网格对线特征进行分组,根据特征点的匹配结果进行线特征匹配,降低线特征匹配复杂度,节约位姿估计时间。构建了点特征和线特征的重投影误差模型,在线特征残差模型中添加角度约束,通过点特征和线特征的位姿增量雅可比矩阵建立点线特征重投影误差统一成本函数。局部建图线程使用ORB-SLAM3经典的局部优化方法调整点、线特征和关键帧位姿,并在后端线程中进行回环修正、子图融合和全局捆绑调整BA(Bundle Adjustment)。在EuRoC数据集上的试验结果表明,SL-SLAM的绝对位姿误差APE(Absolute Pose Error)指标优于其他对比算法,并取得了与真值最接近的轨迹预测结果:均方根误差相较于ORB-SLAM3降低了17.3%。在煤矿井下模拟场景中的试验结果表明,SL-SLAM能适应光照变化和低纹理场景,可以满足煤矿井下移动机器人的定位精度和稳定性要求。
文摘为提升自动驾驶车辆在多车道行驶与作业时的道路环境感知能力,提出了自动驾驶环境下车道级雷视融合方法 LLV-SLAM(lane-level LiDAR-visual fusion SLAM),并构建了适用于雷视融合的实时定位与建图算法(simultaneous localization and mapping,SLAM)。首先,在视觉特征点提取的基础上引入直方图均衡化,并利用激光雷达获取特征点深度信息,通过视觉特征跟踪以提升SLAM系统鲁棒性。其次,利用视觉关键帧信息对激光点云进行运动畸变校正,并将LeGO-LOAM(lightweight and groud-optimized lidar odometry and mapping)融入视觉ORBSLAM2(oriented FAST and rotated BRIEF SLAM2)以增强闭环检测与矫正性能,降低系统累计误差。最后,将视觉图像所获取的位姿进行坐标转换作为激光里程计的位姿初值,辅助激光雷达SLAM进行三维场景重建。实验结果表明:相比于传统的SLAM方法,融合后的LLV-SLAM方法平均定位时延减少了41.61%;在x、y、z方向上的平均定位误差分别减少了34.63%、38.16%、24.09%;在滚转角、俯仰角、偏航角方向上的平均旋转误差减少了40.8%、37.52%、39.5%。LLV-SLAM算法有效抑制了LeGO-LOAM算法的尺度漂移,实时性和鲁棒性有显著提升,能够满足自动驾驶车辆对多车道道路环境的感知需要。
文摘水下同步定位与建图(Simultaneous Localization and Mapping,SLAM)技术使水下机器人能在未知水下环境中同时进行自我定位和环境地图构建,对海洋学研究、海底资源勘探等领域具有重要意义。本文综述了水下视觉SLAM技术最新研究进展、挑战与解决方案及未来研究方向,梳理了水下视觉SLAM的关键理论。水下环境的复杂性,如光线衰减、散射和水流影响,为水下SLAM的研究带来挑战。本文分析了水下视觉SLAM的最新研究进展,包括多传感器融合、深度学习技术及优化算法的应用,这些技术提高了水下SLAM系统的鲁棒性和精度。同时,本文还探讨了水下SLAM技术面临的主要挑战,并提出了可能的解决方案,如提高传感器数据的准确性、增强数据融合算法的实时性和鲁棒性、改进特征提取与匹配方法,以及提升定位与建图算法的精度和稳定性。最后,本文对水下SLAM的未来研究方向进行了展望,包括新型传感器技术、人工智能技术的应用和水下多机器人协同SLAM的发展,旨在提供该领域科研与技术发展的整体视角。
文摘视觉即时定位与建图(visual simultaneous localization and mapping,VSLAM)技术利用视觉传感器分析图像信息,使机器人在未知环境中实现自主定位和实时三维地图构建,是机器人导航和自动驾驶等任务的关键。为了给研究人员提供有价值的参考,梳理了VSLAM的研究现状和最新进展。首先,深入探讨了机器人视觉SLAM算法,根据不同的传感器类型,概述了六种主流的视觉SLAM算法。对这些算法的基本原理进行系统分析,并对其中的经典算法进行了精炼总结。进一步地,将视觉SLAM算法分类为基于特征、基于直接法和基于学习的算法三大类,并详细探讨了各自的优缺点。最后,展望了视觉SLAM技术未来的发展方向,重点关注了深度学习、多传感器融合及实时性能优化等关键研究领域。