本文研究了基于视觉即时定位与地图构建(Simultaneous Localization and Mapping,SLAM)算法的城市地下空间三维建模技术,结合地下空间特点,提出了一种新的三维建模方法。通过优化SLAM算法,实现了在地下环境中高效准确地构建三维模型的...本文研究了基于视觉即时定位与地图构建(Simultaneous Localization and Mapping,SLAM)算法的城市地下空间三维建模技术,结合地下空间特点,提出了一种新的三维建模方法。通过优化SLAM算法,实现了在地下环境中高效准确地构建三维模型的目标。利用RGB-D深度相机,实现了对地下环境的立体感知和数据采集,提升了模型的准确性和响应速度。经测试,验证了所采用方法的有效性和可行性,为城市地下空间的数字化建设提供了关键的技术支持。展开更多
为了解决室内动态环境下移动机器人的准确定位问题,提出了一种融合运动检测算法的半直接法RGB-D视觉SLAM(同时定位与地图创建)算法,它由运动检测、相机位姿估计、基于TSDF (truncated signed distance function)模型的稠密地图构建3个...为了解决室内动态环境下移动机器人的准确定位问题,提出了一种融合运动检测算法的半直接法RGB-D视觉SLAM(同时定位与地图创建)算法,它由运动检测、相机位姿估计、基于TSDF (truncated signed distance function)模型的稠密地图构建3个步骤组成.首先,通过最小化图像光度误差,利用稀疏图像对齐算法实现对相机位姿的初步估计.然后,使用视觉里程计的位姿估计对图像进行运动补偿,建立基于图像块实时更新的高斯模型,依据方差变化分割出图像中的运动物体,进而剔除投影在图像运动区域的局部地图点,通过最小化重投影误差对相机位姿进行进一步优化,提升相机位姿估计精度.最后,使用相机位姿和RGB-D相机图像信息构建TSDF稠密地图,利用图像运动检测结果和地图体素块的颜色变化,完成地图在动态环境下的实时更新.实验结果表明,在室内动态环境下,本文算法能够有效提高相机位姿估计精度,实现稠密地图的实时更新,在提升系统鲁棒性的同时也提升了环境重构的准确性.展开更多
传统视觉同步定位和地图构建(Simultaneous localization and mapping,SLAM)算法建立在静态环境假设的基础之上,当场景中出现动态物体时,会影响系统稳定性,造成位姿估计精度下降。现有方法大多基于概率统计和几何约束来减轻少量动态物...传统视觉同步定位和地图构建(Simultaneous localization and mapping,SLAM)算法建立在静态环境假设的基础之上,当场景中出现动态物体时,会影响系统稳定性,造成位姿估计精度下降。现有方法大多基于概率统计和几何约束来减轻少量动态物体对视觉SLAM系统的影响,但是当场景中动态物体较多时,这些方法失效。针对这一问题,本文提出了一种将动态视觉SLAM算法与多目标跟踪算法相结合的方法。首先采用实例语义分割网络,结合几何约束,在有效地分离静态特征点和动态特征点的同时,进一步实现多目标跟踪,改善跟踪结果,并能够获得运动物体的轨迹和速度矢量信息,从而能够更好地为机器人自主导航提供决策信息。在KITTI数据集上的实验表明,该算法在动态场景中相较ORB⁃SLAM2算法精度提高了28%。展开更多
在低纹理场景中,基于点特征的同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)算法很难追踪足够多的有效特征点,系统甚至无法正常工作.众所周知,丰富的线段特征存在在人造结构化环境中的地面与墙面交界处.因此,提出一...在低纹理场景中,基于点特征的同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)算法很难追踪足够多的有效特征点,系统甚至无法正常工作.众所周知,丰富的线段特征存在在人造结构化环境中的地面与墙面交界处.因此,提出一种点线特征融合的双目视觉SLAM算法.在特征提取前,引入梯度密度滤波器加速线特征提取和提高线匹配的准确度,在特征点匹配阶段,采用渐进采样一致性(Progressive Sampling Consensus,PROSAC)算法剔除误匹配点,从而提高定位精度.此外,在特征的融合过程中引入加权思想.在构造误差函数时对点线特征权重进行合理分配.最后,通过在公开的数据集上得到的仿真并与一些优秀的算法进行对比,该算法性能优于PL-SLAM和LSD-SLAM算法,证明了算法的有效性和准确性.展开更多
为了使机器人在陌生环境中能够通过传感器对环境进行探测,并在对自身定位的同时得到周围环境的三维重建地图,视觉SLAM(Simultaneous Localization and Mapping),即时定位与地图构建应运而生。文章对视觉SLAM方法与特征匹配SIFT算法进行...为了使机器人在陌生环境中能够通过传感器对环境进行探测,并在对自身定位的同时得到周围环境的三维重建地图,视觉SLAM(Simultaneous Localization and Mapping),即时定位与地图构建应运而生。文章对视觉SLAM方法与特征匹配SIFT算法进行了论述与提取效率分析。SIFT算法包含大量单指令多数据流模式的密集型计算,使用CPU+GPU混合异构加速平台在理论上能有效提高其执行性能。通过对国内外学者在GPU并行加速领域研究成果的分析,针对GPU加速SIFT算法展开了分析与展望。展开更多
文摘本文研究了基于视觉即时定位与地图构建(Simultaneous Localization and Mapping,SLAM)算法的城市地下空间三维建模技术,结合地下空间特点,提出了一种新的三维建模方法。通过优化SLAM算法,实现了在地下环境中高效准确地构建三维模型的目标。利用RGB-D深度相机,实现了对地下环境的立体感知和数据采集,提升了模型的准确性和响应速度。经测试,验证了所采用方法的有效性和可行性,为城市地下空间的数字化建设提供了关键的技术支持。
文摘为了解决室内动态环境下移动机器人的准确定位问题,提出了一种融合运动检测算法的半直接法RGB-D视觉SLAM(同时定位与地图创建)算法,它由运动检测、相机位姿估计、基于TSDF (truncated signed distance function)模型的稠密地图构建3个步骤组成.首先,通过最小化图像光度误差,利用稀疏图像对齐算法实现对相机位姿的初步估计.然后,使用视觉里程计的位姿估计对图像进行运动补偿,建立基于图像块实时更新的高斯模型,依据方差变化分割出图像中的运动物体,进而剔除投影在图像运动区域的局部地图点,通过最小化重投影误差对相机位姿进行进一步优化,提升相机位姿估计精度.最后,使用相机位姿和RGB-D相机图像信息构建TSDF稠密地图,利用图像运动检测结果和地图体素块的颜色变化,完成地图在动态环境下的实时更新.实验结果表明,在室内动态环境下,本文算法能够有效提高相机位姿估计精度,实现稠密地图的实时更新,在提升系统鲁棒性的同时也提升了环境重构的准确性.
文摘传统视觉同步定位和地图构建(Simultaneous localization and mapping,SLAM)算法建立在静态环境假设的基础之上,当场景中出现动态物体时,会影响系统稳定性,造成位姿估计精度下降。现有方法大多基于概率统计和几何约束来减轻少量动态物体对视觉SLAM系统的影响,但是当场景中动态物体较多时,这些方法失效。针对这一问题,本文提出了一种将动态视觉SLAM算法与多目标跟踪算法相结合的方法。首先采用实例语义分割网络,结合几何约束,在有效地分离静态特征点和动态特征点的同时,进一步实现多目标跟踪,改善跟踪结果,并能够获得运动物体的轨迹和速度矢量信息,从而能够更好地为机器人自主导航提供决策信息。在KITTI数据集上的实验表明,该算法在动态场景中相较ORB⁃SLAM2算法精度提高了28%。
文摘为了使机器人在陌生环境中能够通过传感器对环境进行探测,并在对自身定位的同时得到周围环境的三维重建地图,视觉SLAM(Simultaneous Localization and Mapping),即时定位与地图构建应运而生。文章对视觉SLAM方法与特征匹配SIFT算法进行了论述与提取效率分析。SIFT算法包含大量单指令多数据流模式的密集型计算,使用CPU+GPU混合异构加速平台在理论上能有效提高其执行性能。通过对国内外学者在GPU并行加速领域研究成果的分析,针对GPU加速SIFT算法展开了分析与展望。