Aiming at the problem of system error and noise in simultaneous localization and mapping(SLAM) technology, we propose a calibration model based on Project Tango device and a loop closure detection algorithm based on v...Aiming at the problem of system error and noise in simultaneous localization and mapping(SLAM) technology, we propose a calibration model based on Project Tango device and a loop closure detection algorithm based on visual vocabulary with memory management. The graph optimization is also combined to achieve a running application. First, the color image and depth information of the environment are collected to establish the calibration model of system error and noise. Second, with constraint condition provided by loop closure detection algorithm, speed up robust feature is calculated and matched. Finally, the motion pose model is solved, and the optimal scene model is determined by graph optimization method. This method is compared with Open Constructor for reconstruction on several experimental scenarios. The results show the number of model's points and faces are larger than Open Constructor's, and the scanning time is less than Open Constructor's. The experimental results show the feasibility and efficiency of the proposed algorithm.展开更多
This paper presents a visual simultaneous localization and mapping(SLAM)system designed for highly dynamic environments,capable of eliminating dynamic objects using only visual information.The proposed system integrat...This paper presents a visual simultaneous localization and mapping(SLAM)system designed for highly dynamic environments,capable of eliminating dynamic objects using only visual information.The proposed system integrates learning-based and geometry-based methods to address the challenges posed by moving objects.The learning-based approach leverages image segmentation to remove previously trained objects,whereas the geometry-based approach utilises point correlation to eliminate unseen objects.By complementing each other,these methods enhance the robustness of the SLAM system in dynamic scenarios.Experimental results demonstrate that the proposed method effectively removes dynamic objects.Comparative studies with state-of-the-art algorithms further show that the proposed method achieves superior accuracy and robustness.展开更多
This paper presents a visual simultaneous localization and mapping(SLAM)system designed for highly dynamic environments,capable of eliminating dynamic objects using only visual information.The proposed system integrat...This paper presents a visual simultaneous localization and mapping(SLAM)system designed for highly dynamic environments,capable of eliminating dynamic objects using only visual information.The proposed system integrates learning-based and geometry-based methods to address the challenges posed by moving objects.The learning-based approach leverages image segmentation to remove previously trained objects,whereas the geometry-based approach utilises point correlation to eliminate unseen objects.By complementing each other,these methods enhance the robustness of the SLAM system in dynamic sce-narios.Experimental results demonstrate that the proposed method effectively removes dynamic objects.Comparative studies with state-of-the-art algorithms further show that the proposed method achieves superior accuracy and robustness.展开更多
In this paper a semi-direct visual odometry and mapping system is proposed with a RGB-D camera,which combines the merits of both feature based and direct based methods.The presented system directly estimates the camer...In this paper a semi-direct visual odometry and mapping system is proposed with a RGB-D camera,which combines the merits of both feature based and direct based methods.The presented system directly estimates the camera motion of two consecutive RGB-D frames by minimizing the photometric error.To permit outliers and noise,a robust sensor model built upon the t-distribution and an error function mixing depth and photometric errors are used to enhance the accuracy and robustness.Local graph optimization based on key frames is used to reduce the accumulative error and refine the local map.The loop closure detection method,which combines the appearance similarity method and spatial location constraints method,increases the speed of detection.Experimental results demonstrate that the proposed approach achieves higher accuracy on the motion estimation and environment reconstruction compared to the other state-of-the-art methods. Moreover,the proposed approach works in real-time on a laptop without a GPU,which makes it attractive for robots equipped with limited computational resources.展开更多
An improved method with better selection capability using a single camera was presented in comparison with previous method. To improve performance, two methods were applied to landmark selection in an unfamiliar indoo...An improved method with better selection capability using a single camera was presented in comparison with previous method. To improve performance, two methods were applied to landmark selection in an unfamiliar indoor environment. First, a modified visual attention method was proposed to automatically select a candidate region as a more useful landmark. In visual attention, candidate landmark regions were selected with different characteristics of ambient color and intensity in the image. Then, the more useful landmarks were selected by combining the candidate regions using clustering. As generally implemented, automatic landmark selection by vision-based simultaneous localization and mapping(SLAM) results in many useless landmarks, because the features of images are distinguished from the surrounding environment but detected repeatedly. These useless landmarks create a serious problem for the SLAM system because they complicate data association. To address this, a method was proposed in which the robot initially collected landmarks through automatic detection while traversing the entire area where the robot performed SLAM, and then, the robot selected only those landmarks that exhibited high rarity through clustering, which enhanced the system performance. Experimental results show that this method of automatic landmark selection results in selection of a high-rarity landmark. The average error of the performance of SLAM decreases 52% compared with conventional methods and the accuracy of data associations increases.展开更多
煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast...煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast and Rotated Brief)-SLAM3算法的煤矿井下移动机器人双目视觉定位算法SL-SLAM。针对光照变化场景,在前端使用光照稳定性的Super-Point特征点提取网络替换原始ORB特征点提取算法,并提出一种特征点网格限定法,有效剔除无效特征点区域,增加位姿估计稳定性。针对低纹理场景,在前端引入稳定的线段检测器LSD(Line Segment Detector)线特征提取算法,并提出一种点线联合算法,按照特征点网格对线特征进行分组,根据特征点的匹配结果进行线特征匹配,降低线特征匹配复杂度,节约位姿估计时间。构建了点特征和线特征的重投影误差模型,在线特征残差模型中添加角度约束,通过点特征和线特征的位姿增量雅可比矩阵建立点线特征重投影误差统一成本函数。局部建图线程使用ORB-SLAM3经典的局部优化方法调整点、线特征和关键帧位姿,并在后端线程中进行回环修正、子图融合和全局捆绑调整BA(Bundle Adjustment)。在EuRoC数据集上的试验结果表明,SL-SLAM的绝对位姿误差APE(Absolute Pose Error)指标优于其他对比算法,并取得了与真值最接近的轨迹预测结果:均方根误差相较于ORB-SLAM3降低了17.3%。在煤矿井下模拟场景中的试验结果表明,SL-SLAM能适应光照变化和低纹理场景,可以满足煤矿井下移动机器人的定位精度和稳定性要求。展开更多
基金Supported by the National Natural Science Foundation of China(61772379)
文摘Aiming at the problem of system error and noise in simultaneous localization and mapping(SLAM) technology, we propose a calibration model based on Project Tango device and a loop closure detection algorithm based on visual vocabulary with memory management. The graph optimization is also combined to achieve a running application. First, the color image and depth information of the environment are collected to establish the calibration model of system error and noise. Second, with constraint condition provided by loop closure detection algorithm, speed up robust feature is calculated and matched. Finally, the motion pose model is solved, and the optimal scene model is determined by graph optimization method. This method is compared with Open Constructor for reconstruction on several experimental scenarios. The results show the number of model's points and faces are larger than Open Constructor's, and the scanning time is less than Open Constructor's. The experimental results show the feasibility and efficiency of the proposed algorithm.
基金supported by the Autonomous Intelligent Unmanned Systems(No.NSFC 62088101)the National Natural Science Foundation of China(No.62306096)in part by the Zhejiang Provincial Natural Science Foundation of China under Grant(No.LD24F030001).
文摘This paper presents a visual simultaneous localization and mapping(SLAM)system designed for highly dynamic environments,capable of eliminating dynamic objects using only visual information.The proposed system integrates learning-based and geometry-based methods to address the challenges posed by moving objects.The learning-based approach leverages image segmentation to remove previously trained objects,whereas the geometry-based approach utilises point correlation to eliminate unseen objects.By complementing each other,these methods enhance the robustness of the SLAM system in dynamic scenarios.Experimental results demonstrate that the proposed method effectively removes dynamic objects.Comparative studies with state-of-the-art algorithms further show that the proposed method achieves superior accuracy and robustness.
基金supported by the Autonomous Intelligent Unmanned Systems(No.NSFC 62088101)the National Natural Science Foundation of China(No.62306096)in part by the Zhejiang Provincial Natural Science Foundation of China under Grant(No.LD24F030001).
文摘This paper presents a visual simultaneous localization and mapping(SLAM)system designed for highly dynamic environments,capable of eliminating dynamic objects using only visual information.The proposed system integrates learning-based and geometry-based methods to address the challenges posed by moving objects.The learning-based approach leverages image segmentation to remove previously trained objects,whereas the geometry-based approach utilises point correlation to eliminate unseen objects.By complementing each other,these methods enhance the robustness of the SLAM system in dynamic sce-narios.Experimental results demonstrate that the proposed method effectively removes dynamic objects.Comparative studies with state-of-the-art algorithms further show that the proposed method achieves superior accuracy and robustness.
基金Supported by the National Natural Science Foundation of China(61501034)
文摘In this paper a semi-direct visual odometry and mapping system is proposed with a RGB-D camera,which combines the merits of both feature based and direct based methods.The presented system directly estimates the camera motion of two consecutive RGB-D frames by minimizing the photometric error.To permit outliers and noise,a robust sensor model built upon the t-distribution and an error function mixing depth and photometric errors are used to enhance the accuracy and robustness.Local graph optimization based on key frames is used to reduce the accumulative error and refine the local map.The loop closure detection method,which combines the appearance similarity method and spatial location constraints method,increases the speed of detection.Experimental results demonstrate that the proposed approach achieves higher accuracy on the motion estimation and environment reconstruction compared to the other state-of-the-art methods. Moreover,the proposed approach works in real-time on a laptop without a GPU,which makes it attractive for robots equipped with limited computational resources.
文摘An improved method with better selection capability using a single camera was presented in comparison with previous method. To improve performance, two methods were applied to landmark selection in an unfamiliar indoor environment. First, a modified visual attention method was proposed to automatically select a candidate region as a more useful landmark. In visual attention, candidate landmark regions were selected with different characteristics of ambient color and intensity in the image. Then, the more useful landmarks were selected by combining the candidate regions using clustering. As generally implemented, automatic landmark selection by vision-based simultaneous localization and mapping(SLAM) results in many useless landmarks, because the features of images are distinguished from the surrounding environment but detected repeatedly. These useless landmarks create a serious problem for the SLAM system because they complicate data association. To address this, a method was proposed in which the robot initially collected landmarks through automatic detection while traversing the entire area where the robot performed SLAM, and then, the robot selected only those landmarks that exhibited high rarity through clustering, which enhanced the system performance. Experimental results show that this method of automatic landmark selection results in selection of a high-rarity landmark. The average error of the performance of SLAM decreases 52% compared with conventional methods and the accuracy of data associations increases.
文摘煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast and Rotated Brief)-SLAM3算法的煤矿井下移动机器人双目视觉定位算法SL-SLAM。针对光照变化场景,在前端使用光照稳定性的Super-Point特征点提取网络替换原始ORB特征点提取算法,并提出一种特征点网格限定法,有效剔除无效特征点区域,增加位姿估计稳定性。针对低纹理场景,在前端引入稳定的线段检测器LSD(Line Segment Detector)线特征提取算法,并提出一种点线联合算法,按照特征点网格对线特征进行分组,根据特征点的匹配结果进行线特征匹配,降低线特征匹配复杂度,节约位姿估计时间。构建了点特征和线特征的重投影误差模型,在线特征残差模型中添加角度约束,通过点特征和线特征的位姿增量雅可比矩阵建立点线特征重投影误差统一成本函数。局部建图线程使用ORB-SLAM3经典的局部优化方法调整点、线特征和关键帧位姿,并在后端线程中进行回环修正、子图融合和全局捆绑调整BA(Bundle Adjustment)。在EuRoC数据集上的试验结果表明,SL-SLAM的绝对位姿误差APE(Absolute Pose Error)指标优于其他对比算法,并取得了与真值最接近的轨迹预测结果:均方根误差相较于ORB-SLAM3降低了17.3%。在煤矿井下模拟场景中的试验结果表明,SL-SLAM能适应光照变化和低纹理场景,可以满足煤矿井下移动机器人的定位精度和稳定性要求。