A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without req...A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without requiring robot kinematics and camera calibration. To speed up the convergence and avoid local minimum of the neural network, this paper uses a genetic algorithm to find the optimal initial weights and thresholds and then uses the BP Mgorithm to train the neural network according to the data given. The proposed method can effectively combine the good global searching ability of genetic algorithms with the accurate local searching feature of BP neural network. The Simulink model for PUMA560 robot visual servo system based on the improved BP neural network is built with the Robotics Toolbox of Matlab. The simulation results indicate that the proposed method can accelerate convergence of the image errors and provide a simple and effective way of robot control.展开更多
A visual servoing tracking controller is proposed based on the sliding mode control theory in order to achieve strong robustness against parameter variations and external disturbances. A sliding plane with time delay ...A visual servoing tracking controller is proposed based on the sliding mode control theory in order to achieve strong robustness against parameter variations and external disturbances. A sliding plane with time delay compensation is presented by the pre-estimate of states. To reduce the chattering of the sliding mode controller, a modified exponential reaching law and hyperbolic tangent function are applied to the design of visual controller and robot joint controller. Simulation results show that the visual servoing control scheme is robust and has good tracking performance.展开更多
In IBVS (image based visual servoing), the error signal in image space should be transformed into the control signal in the input space quickly. To avoid the iterative adjustment and complicated inverse solution of im...In IBVS (image based visual servoing), the error signal in image space should be transformed into the control signal in the input space quickly. To avoid the iterative adjustment and complicated inverse solution of image Jacobian, CMAC (cerebellar model articulation controller) neural network is inserted into visual servo control loop to implement the nonlinear mapping. Two control schemes are used. Simulation results on two schemes are provided, which show a better tracking precision and stability can be achieved using scheme 2.展开更多
A dual operational modes mobile robot system based on visual guiding and visual servo control is presented. This system consists of a mobile robot with a two-axis manipulator and a tele-operation station. In the visua...A dual operational modes mobile robot system based on visual guiding and visual servo control is presented. This system consists of a mobile robot with a two-axis manipulator and a tele-operation station. In the visual guiding mode, for the robot works in an open loop visual servo control mode, the manipulating burden of the operator is reduced largely. In the visual servo mode the robot can locate the position of the target assigned by the operator and pick it up by its manipulator. With the help of the operator, the diffieuh problems of finding and handling a target in a complicated environment by the robot can be solved easily.展开更多
Robot-assisted surgery has become an indispensable component in modern neurosurgical procedures.However,existing registration methods for neurosurgical robots often rely on high-end hardware and involve prolonged or u...Robot-assisted surgery has become an indispensable component in modern neurosurgical procedures.However,existing registration methods for neurosurgical robots often rely on high-end hardware and involve prolonged or unstable registration times,limiting their applicability in dynamic and time-sensitive intraoperative settings.This paper proposes a novel fully automatic monocular-based registration and real-time tracking method.First,dedicated fiducials are designed,and an automatic preoperative and intraoperative detection method for these fiducials is introduced.Second,a geometric representation of the fiducials is constructed based on a 2D KD-Tree.Through a two-stage optimization process,the depth of 2D fiducials is estimated,and 2D-3D correspondences are established to achieve monocular registration.This approach enables fully automatic intraoperative registration using only a single optical camera.Finally,a six-degree-of-freedom visual servo control strategy inspired by the mass-spring-damper system is proposed.By integrating artificial potential field and admittance control,the strategy ensures real-time responsiveness and stable tracking.Experimental results demonstrate that the proposed method achieves a registration time of 0.23 s per instance with an average error of 0.58 mm.Additionally,the motion performance of the control strategy has been validated.Preliminary experiments verify the effectiveness of MonoTracker in dynamic tracking scenarios.This method holds promise for enhancing the adaptability of neurosurgical robots and offers significant clinical application potential.展开更多
文摘A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without requiring robot kinematics and camera calibration. To speed up the convergence and avoid local minimum of the neural network, this paper uses a genetic algorithm to find the optimal initial weights and thresholds and then uses the BP Mgorithm to train the neural network according to the data given. The proposed method can effectively combine the good global searching ability of genetic algorithms with the accurate local searching feature of BP neural network. The Simulink model for PUMA560 robot visual servo system based on the improved BP neural network is built with the Robotics Toolbox of Matlab. The simulation results indicate that the proposed method can accelerate convergence of the image errors and provide a simple and effective way of robot control.
基金supported by China Postdoctoral Science Founda-tion (No. 20080441093)Key Laboratory Foundation of Liaoning Province (No. 2008S088).
文摘A visual servoing tracking controller is proposed based on the sliding mode control theory in order to achieve strong robustness against parameter variations and external disturbances. A sliding plane with time delay compensation is presented by the pre-estimate of states. To reduce the chattering of the sliding mode controller, a modified exponential reaching law and hyperbolic tangent function are applied to the design of visual controller and robot joint controller. Simulation results show that the visual servoing control scheme is robust and has good tracking performance.
基金This project is supported by National Natural Science Foundation of China (No.59990470).
文摘In IBVS (image based visual servoing), the error signal in image space should be transformed into the control signal in the input space quickly. To avoid the iterative adjustment and complicated inverse solution of image Jacobian, CMAC (cerebellar model articulation controller) neural network is inserted into visual servo control loop to implement the nonlinear mapping. Two control schemes are used. Simulation results on two schemes are provided, which show a better tracking precision and stability can be achieved using scheme 2.
基金Supported by the National High Technology Research and Development Program of China (No. 2003AA421030) and the National Science Foundation of China (No. 60375026).
文摘A dual operational modes mobile robot system based on visual guiding and visual servo control is presented. This system consists of a mobile robot with a two-axis manipulator and a tele-operation station. In the visual guiding mode, for the robot works in an open loop visual servo control mode, the manipulating burden of the operator is reduced largely. In the visual servo mode the robot can locate the position of the target assigned by the operator and pick it up by its manipulator. With the help of the operator, the diffieuh problems of finding and handling a target in a complicated environment by the robot can be solved easily.
基金Supported by National Natural Science Foundation of China(60874002) Key Project of Shanghai Education Committee (09ZZ158) Leading Academic Discipline Project of Shanghai Municipal Government (S30501)
基金Supported by National Natural Science Foundation of China(Grant No.92148206).
文摘Robot-assisted surgery has become an indispensable component in modern neurosurgical procedures.However,existing registration methods for neurosurgical robots often rely on high-end hardware and involve prolonged or unstable registration times,limiting their applicability in dynamic and time-sensitive intraoperative settings.This paper proposes a novel fully automatic monocular-based registration and real-time tracking method.First,dedicated fiducials are designed,and an automatic preoperative and intraoperative detection method for these fiducials is introduced.Second,a geometric representation of the fiducials is constructed based on a 2D KD-Tree.Through a two-stage optimization process,the depth of 2D fiducials is estimated,and 2D-3D correspondences are established to achieve monocular registration.This approach enables fully automatic intraoperative registration using only a single optical camera.Finally,a six-degree-of-freedom visual servo control strategy inspired by the mass-spring-damper system is proposed.By integrating artificial potential field and admittance control,the strategy ensures real-time responsiveness and stable tracking.Experimental results demonstrate that the proposed method achieves a registration time of 0.23 s per instance with an average error of 0.58 mm.Additionally,the motion performance of the control strategy has been validated.Preliminary experiments verify the effectiveness of MonoTracker in dynamic tracking scenarios.This method holds promise for enhancing the adaptability of neurosurgical robots and offers significant clinical application potential.