The process of human natural scene categorization consists of two correlated stages: visual perception and visual cognition of natural scenes.Inspired by this fact,we propose a biologically plausible approach for natu...The process of human natural scene categorization consists of two correlated stages: visual perception and visual cognition of natural scenes.Inspired by this fact,we propose a biologically plausible approach for natural scene image classification.This approach consists of one visual perception model and two visual cognition models.The visual perception model,composed of two steps,is used to extract discriminative features from natural scene images.In the first step,we mimic the oriented and bandpass properties of human primary visual cortex by a special complex wavelets transform,which can decompose a natural scene image into a series of 2D spatial structure signals.In the second step,a hybrid statistical feature extraction method is used to generate gist features from those 2D spatial structure signals.Then we design a cognitive feedback model to realize adaptive optimization for the visual perception model.At last,we build a multiple semantics based cognition model to imitate human cognitive mode in rapid natural scene categorization.Experiments on natural scene datasets show that the proposed method achieves high efficiency and accuracy for natural scene classification.展开更多
针对动态场景下视觉SLAM(Simultaneous Localization and Mapping)系统中深度学习分割网络实时性不足,以及相机非期望运动导致位姿估计偏差的问题,提出一种基于跨域掩膜分割的视觉SLAM算法.该算法采用轻量化YOLO-fastest网络结合背景减...针对动态场景下视觉SLAM(Simultaneous Localization and Mapping)系统中深度学习分割网络实时性不足,以及相机非期望运动导致位姿估计偏差的问题,提出一种基于跨域掩膜分割的视觉SLAM算法.该算法采用轻量化YOLO-fastest网络结合背景减除法实现运动物体检测,利用深度图结合深度阈值分割构建跨域掩膜分割机制,并设计相机运动几何校正策略补偿检测框坐标误差,在实现运动物体分割的同时提升处理速度.为优化特征点利用率,采用金字塔光流对动态特征点进行帧间连续跟踪与更新,同时确保仅由静态特征点参与位姿估计过程.在TUM数据集上进行系统性评估,实验结果表明,相比于ORB-SLAM3算法,该算法的绝对位姿误差平均降幅达97.1%,与使用深度学习分割网络的DynaSLAM和DS-SLAM的动态SLAM算法相比,其单帧跟踪时间大幅减少,在精度与效率之间实现了更好的平衡.展开更多
In the era of information and communication technology (ICT) and big data, the map gradually shows a new qualitative feature of “spatiotemporal ubiquitous” with the extension of its object space, expression space an...In the era of information and communication technology (ICT) and big data, the map gradually shows a new qualitative feature of “spatiotemporal ubiquitous” with the extension of its object space, expression space and information source, which challenges the theory of cartographic visualization. This paper discusses the ubiquitous map visualization from the object content and expression form. Oriented to the ternary space, it divides the object dimension of ubiquitous map visualization and analyzes the expression characteristics of ubiquitous map visualization. Based on that, it constructs the variable system, symbol system and method system of ubiquitous map visualization. With three cases of the metro roadmap, the tag map, and the three-dimensional (3D) city map, the application of the proposed content is explained to illustrate its effectiveness. The research in this paper is expected to further enrich the theoretical basis of cartographic visualization and provide theoretical support for the expression and application of ubiquitous map visualization.展开更多
文摘The process of human natural scene categorization consists of two correlated stages: visual perception and visual cognition of natural scenes.Inspired by this fact,we propose a biologically plausible approach for natural scene image classification.This approach consists of one visual perception model and two visual cognition models.The visual perception model,composed of two steps,is used to extract discriminative features from natural scene images.In the first step,we mimic the oriented and bandpass properties of human primary visual cortex by a special complex wavelets transform,which can decompose a natural scene image into a series of 2D spatial structure signals.In the second step,a hybrid statistical feature extraction method is used to generate gist features from those 2D spatial structure signals.Then we design a cognitive feedback model to realize adaptive optimization for the visual perception model.At last,we build a multiple semantics based cognition model to imitate human cognitive mode in rapid natural scene categorization.Experiments on natural scene datasets show that the proposed method achieves high efficiency and accuracy for natural scene classification.
文摘针对动态场景下视觉SLAM(Simultaneous Localization and Mapping)系统中深度学习分割网络实时性不足,以及相机非期望运动导致位姿估计偏差的问题,提出一种基于跨域掩膜分割的视觉SLAM算法.该算法采用轻量化YOLO-fastest网络结合背景减除法实现运动物体检测,利用深度图结合深度阈值分割构建跨域掩膜分割机制,并设计相机运动几何校正策略补偿检测框坐标误差,在实现运动物体分割的同时提升处理速度.为优化特征点利用率,采用金字塔光流对动态特征点进行帧间连续跟踪与更新,同时确保仅由静态特征点参与位姿估计过程.在TUM数据集上进行系统性评估,实验结果表明,相比于ORB-SLAM3算法,该算法的绝对位姿误差平均降幅达97.1%,与使用深度学习分割网络的DynaSLAM和DS-SLAM的动态SLAM算法相比,其单帧跟踪时间大幅减少,在精度与效率之间实现了更好的平衡.
文摘In the era of information and communication technology (ICT) and big data, the map gradually shows a new qualitative feature of “spatiotemporal ubiquitous” with the extension of its object space, expression space and information source, which challenges the theory of cartographic visualization. This paper discusses the ubiquitous map visualization from the object content and expression form. Oriented to the ternary space, it divides the object dimension of ubiquitous map visualization and analyzes the expression characteristics of ubiquitous map visualization. Based on that, it constructs the variable system, symbol system and method system of ubiquitous map visualization. With three cases of the metro roadmap, the tag map, and the three-dimensional (3D) city map, the application of the proposed content is explained to illustrate its effectiveness. The research in this paper is expected to further enrich the theoretical basis of cartographic visualization and provide theoretical support for the expression and application of ubiquitous map visualization.