The advantages and disadvantages of two existing methods for explosive field visualization are analyzed in this paper. And a new method based on image fusion is proposed to integrate their complementary advantages. Wi...The advantages and disadvantages of two existing methods for explosive field visualization are analyzed in this paper. And a new method based on image fusion is proposed to integrate their complementary advantages. With the method, two source images built by equal mapping and modulus mapping are individually decomposed into two Gauss-Laplacian pyramid sequences. Then, the two individual sequences are used to make a composite one according to the process of fusion. Finally, a new image is reconstructed from the composite sequence. Experimental results show that the new images integrate the advantages of sources, effectively improve the visualization, and disclose more information about explosive field.展开更多
为提升自动驾驶车辆在多车道行驶与作业时的道路环境感知能力,提出了自动驾驶环境下车道级雷视融合方法 LLV-SLAM(lane-level LiDAR-visual fusion SLAM),并构建了适用于雷视融合的实时定位与建图算法(simultaneous localization and ma...为提升自动驾驶车辆在多车道行驶与作业时的道路环境感知能力,提出了自动驾驶环境下车道级雷视融合方法 LLV-SLAM(lane-level LiDAR-visual fusion SLAM),并构建了适用于雷视融合的实时定位与建图算法(simultaneous localization and mapping,SLAM)。首先,在视觉特征点提取的基础上引入直方图均衡化,并利用激光雷达获取特征点深度信息,通过视觉特征跟踪以提升SLAM系统鲁棒性。其次,利用视觉关键帧信息对激光点云进行运动畸变校正,并将LeGO-LOAM(lightweight and groud-optimized lidar odometry and mapping)融入视觉ORBSLAM2(oriented FAST and rotated BRIEF SLAM2)以增强闭环检测与矫正性能,降低系统累计误差。最后,将视觉图像所获取的位姿进行坐标转换作为激光里程计的位姿初值,辅助激光雷达SLAM进行三维场景重建。实验结果表明:相比于传统的SLAM方法,融合后的LLV-SLAM方法平均定位时延减少了41.61%;在x、y、z方向上的平均定位误差分别减少了34.63%、38.16%、24.09%;在滚转角、俯仰角、偏航角方向上的平均旋转误差减少了40.8%、37.52%、39.5%。LLV-SLAM算法有效抑制了LeGO-LOAM算法的尺度漂移,实时性和鲁棒性有显著提升,能够满足自动驾驶车辆对多车道道路环境的感知需要。展开更多
该研究通过文献计量分析,探讨人工智能在阿尔茨海默病研究中的发展趋势和应用热点。基于Web of Science核心数据库,检索了2013—2023年间的3 680篇相关文献,利用CiteSpace软件进行共现分析与关键词聚类,分析了发文趋势、国家和机构的合...该研究通过文献计量分析,探讨人工智能在阿尔茨海默病研究中的发展趋势和应用热点。基于Web of Science核心数据库,检索了2013—2023年间的3 680篇相关文献,利用CiteSpace软件进行共现分析与关键词聚类,分析了发文趋势、国家和机构的合作情况、核心作者及共被引文献等。研究结果表明,人工智能在阿尔茨海默病领域的应用主要集中在影像数据分析与早期诊断、多模态数据融合以及脑网络功能连接三个方向。同时,任务分析和迁移学习作为新兴热点,显示了人工智能在个体化诊断和长期病情管理中的潜力。从结果分析可知,人工智能在阿尔茨海默病诊断与治疗中的应用正处于快速发展阶段,未来研究将聚焦于算法的泛化能力提升和多模态数据处理能力,以提供更加精准的诊断和个体化治疗方案。展开更多
基金Sponsored by the National Natural Science Foundation of China(10625208)the Basic Research Foundation of Beijing Institute of Technology(20061242005)the Foundation of State Key Laboratory of Explosion Science and Technology(ZDKT08-02)
文摘The advantages and disadvantages of two existing methods for explosive field visualization are analyzed in this paper. And a new method based on image fusion is proposed to integrate their complementary advantages. With the method, two source images built by equal mapping and modulus mapping are individually decomposed into two Gauss-Laplacian pyramid sequences. Then, the two individual sequences are used to make a composite one according to the process of fusion. Finally, a new image is reconstructed from the composite sequence. Experimental results show that the new images integrate the advantages of sources, effectively improve the visualization, and disclose more information about explosive field.
文摘为提升自动驾驶车辆在多车道行驶与作业时的道路环境感知能力,提出了自动驾驶环境下车道级雷视融合方法 LLV-SLAM(lane-level LiDAR-visual fusion SLAM),并构建了适用于雷视融合的实时定位与建图算法(simultaneous localization and mapping,SLAM)。首先,在视觉特征点提取的基础上引入直方图均衡化,并利用激光雷达获取特征点深度信息,通过视觉特征跟踪以提升SLAM系统鲁棒性。其次,利用视觉关键帧信息对激光点云进行运动畸变校正,并将LeGO-LOAM(lightweight and groud-optimized lidar odometry and mapping)融入视觉ORBSLAM2(oriented FAST and rotated BRIEF SLAM2)以增强闭环检测与矫正性能,降低系统累计误差。最后,将视觉图像所获取的位姿进行坐标转换作为激光里程计的位姿初值,辅助激光雷达SLAM进行三维场景重建。实验结果表明:相比于传统的SLAM方法,融合后的LLV-SLAM方法平均定位时延减少了41.61%;在x、y、z方向上的平均定位误差分别减少了34.63%、38.16%、24.09%;在滚转角、俯仰角、偏航角方向上的平均旋转误差减少了40.8%、37.52%、39.5%。LLV-SLAM算法有效抑制了LeGO-LOAM算法的尺度漂移,实时性和鲁棒性有显著提升,能够满足自动驾驶车辆对多车道道路环境的感知需要。
文摘该研究通过文献计量分析,探讨人工智能在阿尔茨海默病研究中的发展趋势和应用热点。基于Web of Science核心数据库,检索了2013—2023年间的3 680篇相关文献,利用CiteSpace软件进行共现分析与关键词聚类,分析了发文趋势、国家和机构的合作情况、核心作者及共被引文献等。研究结果表明,人工智能在阿尔茨海默病领域的应用主要集中在影像数据分析与早期诊断、多模态数据融合以及脑网络功能连接三个方向。同时,任务分析和迁移学习作为新兴热点,显示了人工智能在个体化诊断和长期病情管理中的潜力。从结果分析可知,人工智能在阿尔茨海默病诊断与治疗中的应用正处于快速发展阶段,未来研究将聚焦于算法的泛化能力提升和多模态数据处理能力,以提供更加精准的诊断和个体化治疗方案。