期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
DKP-SLAM:A Visual SLAM for Dynamic Indoor Scenes Based on Object Detection and Region Probability
1
作者 Menglin Yin Yong Qin Jiansheng Peng 《Computers, Materials & Continua》 SCIE EI 2025年第1期1329-1347,共19页
In dynamic scenarios,visual simultaneous localization and mapping(SLAM)algorithms often incorrectly incorporate dynamic points during camera pose computation,leading to reduced accuracy and robustness.This paper prese... In dynamic scenarios,visual simultaneous localization and mapping(SLAM)algorithms often incorrectly incorporate dynamic points during camera pose computation,leading to reduced accuracy and robustness.This paper presents a dynamic SLAM algorithm that leverages object detection and regional dynamic probability.Firstly,a parallel thread employs the YOLOX object detectionmodel to gather 2D semantic information and compensate for missed detections.Next,an improved K-means++clustering algorithm clusters bounding box regions,adaptively determining the threshold for extracting dynamic object contours as dynamic points change.This process divides the image into low dynamic,suspicious dynamic,and high dynamic regions.In the tracking thread,the dynamic point removal module assigns dynamic probability weights to the feature points in these regions.Combined with geometric methods,it detects and removes the dynamic points.The final evaluation on the public TUM RGB-D dataset shows that the proposed dynamic SLAM algorithm surpasses most existing SLAM algorithms,providing better pose estimation accuracy and robustness in dynamic environments. 展开更多
关键词 visual slam dynamic scene YOLOX K-means++clustering dynamic probability
在线阅读 下载PDF
YGC-SLAM:A visual SLAM based on improved YOLOv5 and geometric constraints for dynamic indoor environments
2
作者 Juncheng ZHANG Fuyang KE +2 位作者 Qinqin TANG Wenming YU Ming ZHANG 《虚拟现实与智能硬件(中英文)》 2025年第1期62-82,共21页
Background As visual simultaneous localization and mapping(SLAM)is primarily based on the assumption of a static scene,the presence of dynamic objects in the frame causes problems such as a deterioration of system rob... Background As visual simultaneous localization and mapping(SLAM)is primarily based on the assumption of a static scene,the presence of dynamic objects in the frame causes problems such as a deterioration of system robustness and inaccurate position estimation.In this study,we propose a YGC-SLAM for indoor dynamic environments based on the ORB-SLAM2 framework combined with semantic and geometric constraints to improve the positioning accuracy and robustness of the system.Methods First,the recognition accuracy of YOLOv5 was improved by introducing the convolution block attention model and the improved EIOU loss function,whereby the prediction frame converges quickly for better detection.The improved YOLOv5 was then added to the tracking thread for dynamic target detection to eliminate dynamic points.Subsequently,multi-view geometric constraints were used for re-judging to further eliminate dynamic points while enabling more useful feature points to be retained and preventing the semantic approach from over-eliminating feature points,causing a failure of map building.The K-means clustering algorithm was used to accelerate this process and quickly calculate and determine the motion state of each cluster of pixel points.Finally,a strategy for drawing keyframes with de-redundancy was implemented to construct a clear 3D dense static point-cloud map.Results Through testing on TUM dataset and a real environment,the experimental results show that our algorithm reduces the absolute trajectory error by 98.22%and the relative trajectory error by 97.98%compared with the original ORBSLAM2,which is more accurate and has better real-time performance than similar algorithms,such as DynaSLAM and DS-SLAM.Conclusions The YGC-SLAM proposed in this study can effectively eliminate the adverse effects of dynamic objects,and the system can better complete positioning and map building tasks in complex environments. 展开更多
关键词 visual slam Dynamic slam Target detection Geometric constraints
在线阅读 下载PDF
PPS-SLAM: Dynamic Visual SLAM with a Precise Pruning Strategy
3
作者 Jiansheng Peng Wei Qian Hongyu Zhang 《Computers, Materials & Continua》 2025年第2期2849-2868,共20页
Dynamic visual SLAM (Simultaneous Localization and Mapping) is an important research area, but existing methods struggle to balance real-time performance and accuracy in removing dynamic feature points, especially whe... Dynamic visual SLAM (Simultaneous Localization and Mapping) is an important research area, but existing methods struggle to balance real-time performance and accuracy in removing dynamic feature points, especially when semantic information is missing. This paper presents a novel dynamic SLAM system that uses optical flow tracking and epipolar geometry to identify dynamic feature points and applies a regional dynamic probability method to improve removal accuracy. We developed two innovative algorithms for precise pruning of dynamic regions: first, using optical flow and epipolar geometry to identify and prune dynamic areas while preserving static regions on stationary dynamic objects to optimize tracking performance;second, propagating dynamic probabilities across frames to mitigate the impact of semantic information loss in some frames. Experiments show that our system significantly reduces trajectory and pose errors in dynamic scenes, achieving dynamic feature point removal accuracy close to that of semantic segmentation methods, while maintaining high real-time performance. Our system performs exceptionally well in highly dynamic environments, especially where complex dynamic objects are present, demonstrating its advantage in handling dynamic scenarios. The experiments also show that while traditional methods may fail in tracking when semantic information is lost, our approach effectively reduces the misidentification of dynamic regions caused by such loss, thus improving system robustness and accuracy. 展开更多
关键词 visual slam dynamic slam YOLOv8
在线阅读 下载PDF
Visual SLAM in dynamic environments based on object detection 被引量:9
4
作者 Yong-bao Ai Ting Rui +4 位作者 Xiao-qiang Yang Jia-lin He Lei Fu Jian-bin Li Ming Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1712-1721,共10页
A great number of visual simultaneous localization and mapping(VSLAM)systems need to assume static features in the environment.However,moving objects can vastly impair the performance of a VSLAM system which relies on... A great number of visual simultaneous localization and mapping(VSLAM)systems need to assume static features in the environment.However,moving objects can vastly impair the performance of a VSLAM system which relies on the static-world assumption.To cope with this challenging topic,a real-time and robust VSLAM system based on ORB-SLAM2 for dynamic environments was proposed.To reduce the influence of dynamic content,we incorporate the deep-learning-based object detection method in the visual odometry,then the dynamic object probability model is added to raise the efficiency of object detection deep neural network and enhance the real-time performance of our system.Experiment with both on the TUM and KITTI benchmark dataset,as well as in a real-world environment,the results clarify that our method can significantly reduce the tracking error or drift,enhance the robustness,accuracy and stability of the VSLAM system in dynamic scenes. 展开更多
关键词 visual slam Object detection Dynamic object probability model Dynamic environments
在线阅读 下载PDF
Visual SLAM Based on Object Detection Network:A Review 被引量:1
5
作者 Jiansheng Peng Dunhua Chen +3 位作者 Qing Yang Chengjun Yang Yong Xu Yong Qin 《Computers, Materials & Continua》 SCIE EI 2023年第12期3209-3236,共28页
Visual simultaneous localization and mapping(SLAM)is crucial in robotics and autonomous driving.However,traditional visual SLAM faces challenges in dynamic environments.To address this issue,researchers have proposed ... Visual simultaneous localization and mapping(SLAM)is crucial in robotics and autonomous driving.However,traditional visual SLAM faces challenges in dynamic environments.To address this issue,researchers have proposed semantic SLAM,which combines object detection,semantic segmentation,instance segmentation,and visual SLAM.Despite the growing body of literature on semantic SLAM,there is currently a lack of comprehensive research on the integration of object detection and visual SLAM.Therefore,this study aims to gather information from multiple databases and review relevant literature using specific keywords.It focuses on visual SLAM based on object detection,covering different aspects.Firstly,it discusses the current research status and challenges in this field,highlighting methods for incorporating semantic information from object detection networks into mileage measurement,closed-loop detection,and map construction.It also compares the characteristics and performance of various visual SLAM object detection algorithms.Lastly,it provides an outlook on future research directions and emerging trends in visual SLAM.Research has shown that visual SLAM based on object detection has significant improvements compared to traditional SLAM in dynamic point removal,data association,point cloud segmentation,and other technologies.It can improve the robustness and accuracy of the entire SLAM system and can run in real time.With the continuous optimization of algorithms and the improvement of hardware level,object visual SLAM has great potential for development. 展开更多
关键词 Object detection visual slam visual odometry loop closure detection semantic map
在线阅读 下载PDF
Collaborative visual SLAM for multiple agents:A brief survey 被引量:5
6
作者 Danping ZOU Ping TAN Wenxian YU 《Virtual Reality & Intelligent Hardware》 2019年第5期461-482,共22页
This article presents a brief survey to visual simultaneous localization and mapping (SLAM) systems applied to multiple independently moving agents, such as a team of ground or aerial vehicles, a group of users holdin... This article presents a brief survey to visual simultaneous localization and mapping (SLAM) systems applied to multiple independently moving agents, such as a team of ground or aerial vehicles, a group of users holding augmented or virtual reality devices. Such visual SLAM system, name as collaborative visual SLAM, is different from a typical visual SLAM deployed on a single agent in that information is exchanged or shared among different agents to achieve better robustness, efficiency, and accuracy. We review the representative works on this topic proposed in the past ten years and describe the key components involved in designing such a system including collaborative pose estimation and mapping tasks, as well as the emerging topic of decentralized architecture. We believe this brief survey could be helpful to someone who are working on this topic or developing multi-agent applications, particularly micro-aerial vehicle swarm or collaborative augmented/virtual reality. 展开更多
关键词 visual slam Multiple agent UAV swarm Collaborative AR/VR
在线阅读 下载PDF
多机器人协同视觉SLAM技术研究综述 被引量:2
7
作者 杨子迪 李建胜 +3 位作者 王安成 李雪强 罗豪龙 郭雨岩 《测绘科学技术学报》 2025年第1期57-67,共11页
随着移动机器人自主环境感知和定位导航任务逐渐向高复杂度、大尺度的方向发展,单机器人视觉SLAM在精度、效率和可靠性等方面的局限性逐渐凸显,多机器人协同视觉SLAM技术作为解决方案成为了SLAM领域的研究热点。首先,结合多机器人SLAM... 随着移动机器人自主环境感知和定位导航任务逐渐向高复杂度、大尺度的方向发展,单机器人视觉SLAM在精度、效率和可靠性等方面的局限性逐渐凸显,多机器人协同视觉SLAM技术作为解决方案成为了SLAM领域的研究热点。首先,结合多机器人SLAM的本质优势,从视觉SLAM的发展和其研究重心的变化分析了单机器人视觉SLAM向多机器人协同视觉SLAM的发展趋势。其次,围绕多机器人协同视觉SLAM技术发展的3个关键问题,分别就多机器人协同视觉SLAM系统架构、多机器人协同视觉SLAM相对位姿估计方法以及多机器人视觉SLAM系统的协同规划与建图3个方面展开讨论,对相应的解决方法和其优缺点进行了分析和总结。最后,对多机器人协同视觉SLAM技术的未来研究方向做出了展望。 展开更多
关键词 多机器人系统 视觉slam 协同slam 相对位姿估计 路径规划
在线阅读 下载PDF
Bearing-only Visual SLAM for Small Unmanned Aerial Vehicles in GPS-denied Environments 被引量:7
8
作者 Chao-Lei Wang Tian-Miao Wang +2 位作者 Jian-Hong Liang Yi-Cheng Zhang Yi Zhou 《International Journal of Automation and computing》 EI CSCD 2013年第5期387-396,共10页
This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observati... This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observations from an onboard monocular camera.A homography based approach is used to calculate the motion of the vehicle in 6 degrees of freedom by image feature match.This visual measurement is fused with the inertial outputs by an indirect extended Kalman filter(EKF) for attitude and velocity estimation.Then,another EKF is employed to estimate the position of the vehicle and the locations of the features in the map.Both simulations and experiments are carried out to test the performance of the proposed system.The result of the comparison with the referential global positioning system/inertial navigation system(GPS/INS) navigation indicates that the proposed SLAM can provide reliable and stable state estimation for small UAVs in GPS-denied environments. 展开更多
关键词 visual simultaneous localization and mapping(slam bearing-only observation inertial measurement unit small unmanned aerial vehicles(UAVs) GPS-denied environment
原文传递
Motion estimation based feature selection for visual SLAM
9
作者 孟旭炯 Jiang Rongxin Zhou Fan Chen Yaowu 《High Technology Letters》 EI CAS 2011年第4期433-438,共6页
Feature selection is always an important issue in the visual SLAM (simultaneous location and mapping) literature. Considering that the location estimation can be improved by tracking features with larger value of vi... Feature selection is always an important issue in the visual SLAM (simultaneous location and mapping) literature. Considering that the location estimation can be improved by tracking features with larger value of visible time, a new feature selection method based on motion estimation is proposed. First, a k-step iteration algorithm is presented for visible time estimation using an affme motion model; then a delayed feature detection method is introduced for efficiently detecting features with the maximum visible time. As a means of validation for the proposed method, both simulation and real data experiments are carded out. Results show that the proposed method can improve both the estimation performance and the computational performance compared with the existing random feature selection method. 展开更多
关键词 visual slam feature selection motion estimation computational efficiency CONSISTENCY extended Kalman filter (EKF)
在线阅读 下载PDF
MG-SLAM: RGB-D SLAM Based on Semantic Segmentation for Dynamic Environment in the Internet of Vehicles 被引量:1
10
作者 Fengju Zhang Kai Zhu 《Computers, Materials & Continua》 2025年第2期2353-2372,共20页
The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology play... The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2, MG-SLAM incorporates a dynamic target detection process that enables the detection of both known and unknown moving objects. In this process, a separate semantic segmentation thread is required to segment dynamic target instances, and the Mask R-CNN algorithm is applied on the Graphics Processing Unit (GPU) to accelerate segmentation. To reduce computational cost, only key frames are segmented to identify known dynamic objects. Additionally, a multi-view geometry method is adopted to detect unknown moving objects. The results demonstrate that MG-SLAM achieves higher precision, with an improvement from 0.2730 m to 0.0135 m in precision. Moreover, the processing time required by MG-SLAM is significantly reduced compared to other dynamic scene SLAM algorithms, which illustrates its efficacy in locating objects in dynamic scenes. 展开更多
关键词 visual slam dynamic scene semantic segmentation GPU acceleration key segmentation frame
在线阅读 下载PDF
视觉SLAM研究进展 被引量:35
11
作者 王霞 左一凡 《智能系统学报》 CSCD 北大核心 2020年第5期825-834,共10页
视觉SLAM是指相机作为传感器进行自身定位同步创建环境地图。SLAM在机器人、无人机和无人车导航中具有重要作用,定位精度会影响避障精度,地图构建质量直接影响后续路径规划等算法的性能,是智能移动体应用的核心算法。本文介绍主流的视觉... 视觉SLAM是指相机作为传感器进行自身定位同步创建环境地图。SLAM在机器人、无人机和无人车导航中具有重要作用,定位精度会影响避障精度,地图构建质量直接影响后续路径规划等算法的性能,是智能移动体应用的核心算法。本文介绍主流的视觉SLAM系统架构,包括几种最常见的视觉传感器,以及前端的功能和基于优化的后端。并根据视觉SLAM系统的度量地图的种类不同将视觉SLAM分为稀疏视觉SLAM、半稠密视觉SLAM和稠密视觉SLAM 3种,分别介绍其标志性成果和研究进展,提出视觉SLAM目前存在的问题以及未来可能的发展。 展开更多
关键词 视觉同步定位与创建地图 稀疏视觉slam 半稠密视觉slam 稠密视觉slam 视觉传感器 优化 视觉slam系统 度量地图
在线阅读 下载PDF
面向室内动态场景的多传感视觉SLAM方法 被引量:4
12
作者 张建华 张天晶 +2 位作者 赵岩 张霖 周浩 《信息与控制》 CSCD 北大核心 2022年第6期641-650,661,共11页
针对传统同时定位与地图构建(simultaneous localization and mapping,SLAM)框架面临动态场景时产生明显定位误差,建立的场景稠密地图会包含动态对象及其运动叠影,从而导致定位与建图鲁棒性不足的问题,面向以人类为主要动态对象的室内... 针对传统同时定位与地图构建(simultaneous localization and mapping,SLAM)框架面临动态场景时产生明显定位误差,建立的场景稠密地图会包含动态对象及其运动叠影,从而导致定位与建图鲁棒性不足的问题,面向以人类为主要动态对象的室内动态场景,从“温度”的角度出发,提出基于热像仪与深度相机结合的多传感SLAM协同方案,解决室内动态场景中的定位与建图难题。首先,建立一套针对热像仪与深度相机的联合标定策略,重新设计标定板与标定方案,完成相机的内参标定、外参标定与图像配准,得到一一对应的RGB、深度、热(RDH)三模图像;其次,由热图像得到人体掩模图像,进而在ORB-SLAM2系统框架下构建静态特征提取与数据关联策略,实现基于三模图像的视觉里程计;然后,基于人体掩模图像更新深度图像,滤除人体区域,进而完成基于三模图像的静态环境稠密地图构建;最后,在室内动态场景下进行实验验证,结果表明所提出算法在室内动态场景下可有效剔除动态对象的干扰特征,相对传统SLAM算法具有明显优势。 展开更多
关键词 动态场景 视觉slam 热像仪 RDH三模图像 多传感协同
原文传递
基于图优化的GNSS/双目视觉/惯性SLAM系统开发及应用 被引量:7
13
作者 夏琳琳 宋梓维 +1 位作者 方亮 孙伍虹志 《中国惯性技术学报》 EI CSCD 北大核心 2024年第5期475-483,共9页
为提高机器人室外长航时定位精度,提出一种基于图优化的全球导航卫星系统(GNSS)/双目视觉/惯性同时定位与建图(SLAM)系统开发及应用。将空间中的线特征作为几何约束的补充,集成至前端的特征提取及后端的位姿优化线程,提升位姿解算精度... 为提高机器人室外长航时定位精度,提出一种基于图优化的全球导航卫星系统(GNSS)/双目视觉/惯性同时定位与建图(SLAM)系统开发及应用。将空间中的线特征作为几何约束的补充,集成至前端的特征提取及后端的位姿优化线程,提升位姿解算精度。同时,以因子图构建联合优化的图结构,并推导出全局观测误差模型。近200 m的BullDog-CX机器人巡检结果表明,所提算法相比于VINSFusion和PL-VINS分别取得约12.6%及3.4%的定位精度提升,为室外机器人长航时导航提供了一种可行方案。 展开更多
关键词 GNSS/双目视觉/惯性slam系统 图优化 线特征约束 全局观测 多传感器融合
在线阅读 下载PDF
多无人系统协同视觉SLAM算法 被引量:1
14
作者 魏强 张冬梅 范勇生 《载人航天》 CSCD 北大核心 2023年第1期29-35,共7页
针对传统同时定位与地图构建(SLAM)方法受计算能力、存储能力的限制无法在大范围场景下作业,无法建立大范围场景的全局一致性地图等问题,基于ORB-SLAM2系统框架建立了一种中心式的多无人系统协同视觉SLAM算法。设计了地图大小限制策略,... 针对传统同时定位与地图构建(SLAM)方法受计算能力、存储能力的限制无法在大范围场景下作业,无法建立大范围场景的全局一致性地图等问题,基于ORB-SLAM2系统框架建立了一种中心式的多无人系统协同视觉SLAM算法。设计了地图大小限制策略,以保证无人系统不受机载设备算力和存储能力的影响,基于字典机制和Sim3转换构建了地图融合优化算法,以完成全局地图构建与优化。最后进行了数据集测试,结果表明:所提出算法能够完成多无人系统协同SLAM,相对传统SLAM算法具有明显优势。 展开更多
关键词 视觉slam 无人系统协同 地图融合 状态估计
在线阅读 下载PDF
动态场景下基于3D多目标追踪的实时视觉SLAM方法研究 被引量:3
15
作者 陈吉清 车宇翔 +2 位作者 田小强 兰凤崇 周云郊 《汽车工程》 EI CSCD 北大核心 2024年第5期776-783,共8页
近年来一些解决动态场景下的SLAM技术被提出,其中SLAM与MOT结合的技术路线不仅可解决动态场景问题,还可以提高系统对周围场景的理解,获得了更大关注。本文介绍了一种高效的实时在线视觉SLAMMOT融合系统,以双目视觉或RGBD作为输入,只须借... 近年来一些解决动态场景下的SLAM技术被提出,其中SLAM与MOT结合的技术路线不仅可解决动态场景问题,还可以提高系统对周围场景的理解,获得了更大关注。本文介绍了一种高效的实时在线视觉SLAMMOT融合系统,以双目视觉或RGBD作为输入,只须借助2D目标检测网络,便能高效、准确、鲁棒地跟踪相机以及动态目标的位姿,并生成稀疏点云地图。为提高多动态目标追踪的精度与准确度,引入了级联匹配与IOU匹配结合的策略;利用阿克曼转向模型来简化追踪目标的运动,减少求解动态目标位姿所需匹配点的数量;利用因子图将相机与动态目标的追踪结果进行联合优化,同时提高相机、追踪目标的位姿和地图点的精度。最后在KITTI跟踪数据集上与其他方法进行比较。结果表明,在满足实时性要求的前提下,该方法仍能准确地追踪相机以及动态目标位姿。 展开更多
关键词 视觉slam 动态场景 多目标追踪 实时系统
在线阅读 下载PDF
月面特征稀疏环境下的视觉惯性SLAM方法 被引量:10
16
作者 谢洪乐 陈卫东 +1 位作者 范亚娴 王景川 《航空学报》 EI CAS CSCD 北大核心 2021年第1期298-308,共11页
月球车在执行科学探测任务过程中,其自身的高精度定位是一项亟需解决的关键问题。针对在特征稀疏的月面环境下的定位问题,提出一种视觉惯性融合的SLAM方法,将视觉测量与惯性传感器的信息利用位姿图优化方法融合,实现高精度的联合定位。... 月球车在执行科学探测任务过程中,其自身的高精度定位是一项亟需解决的关键问题。针对在特征稀疏的月面环境下的定位问题,提出一种视觉惯性融合的SLAM方法,将视觉测量与惯性传感器的信息利用位姿图优化方法融合,实现高精度的联合定位。针对特征稀疏环境下的前端视觉数据关联误差较大的问题,提出了一种基于四元树的光流跟踪算法,能够有效地跟踪鲁棒的特征点,提升了关键帧之间相对位姿估计的准确性。并且针对月面环境特有的恒星无穷远点干扰问题,提出一种高效的恒星点剔除算法,能够有效改善无穷远点导致的定位精度下降的问题。搭建了一套模拟月面环境的计算机仿真系统,并构建了多个月面环境视觉惯性SLAM仿真数据集,在不同的模拟月面场景下进行定位性能仿真验证,仿真测试结果表明本文算法的鲁棒性更强,具有更高的定位准确度。 展开更多
关键词 同时定位与地图构建(slam) 视觉惯性定位系统 传感器融合 月面环境 月球车
原文传递
大尺度弱纹理场景下多源信息融合SLAM算法 被引量:11
17
作者 朱叶青 金瑞 赵良玉 《宇航学报》 EI CAS CSCD 北大核心 2021年第10期1271-1282,共12页
为实现自主机器人大尺度弱纹理场景下局部精准和全局无漂移的状态估计,提出一种视觉惯性与全球导航卫星系统多源信息融合的同时定位与地图构建算法。首先,通过在局部状态估计中加入线特征来更直观表示环境的几何结构信息,有效提升了弱... 为实现自主机器人大尺度弱纹理场景下局部精准和全局无漂移的状态估计,提出一种视觉惯性与全球导航卫星系统多源信息融合的同时定位与地图构建算法。首先,通过在局部状态估计中加入线特征来更直观表示环境的几何结构信息,有效提升了弱纹理场景中关键帧之间相对位姿估计的准确性;其次,通过引入线性误差表示,将线性特征表示为直线端点上的线性约束,从而将线特征整合到基于特征点算法的线性表示中,有效改善算法在重复线特征场景下的鲁棒性。最后,使用多源信息融合算法,融合视觉惯性与GNSS测量信息实现了局部精确和全局无漂移的位姿估计,有效解决了大尺度弱纹理场景下的精准状态估计问题。多个公共数据集的评估结果表明,所提出算法的鲁棒性更强、定位准确度更高。 展开更多
关键词 同时定位与地图构建 视觉惯性系统 多源信息融合 全球导航卫星系统 大尺度弱纹理场景
在线阅读 下载PDF
直接法和共视图优化的视觉惯性SLAM系统研究 被引量:2
18
作者 张有全 祁宇明 +2 位作者 邓三鹏 孙建康 王帅 《自动化与仪器仪表》 2022年第5期197-203,共7页
视觉SLAM系统在相机快速旋转或光照频繁变化时,极易跟踪丢失。为此,提出一种基于直接法和共视图优化的紧耦合视觉惯性SLAM系统,融合IMU信息提高系统的鲁棒性,采用直接法前端提高系统的实时性,共视图优化后端提高系统的定位精度。该系统... 视觉SLAM系统在相机快速旋转或光照频繁变化时,极易跟踪丢失。为此,提出一种基于直接法和共视图优化的紧耦合视觉惯性SLAM系统,融合IMU信息提高系统的鲁棒性,采用直接法前端提高系统的实时性,共视图优化后端提高系统的定位精度。该系统由前端和后端以及回环检测三个模块组成。跟踪线程利用IMU信息和基于稀疏图像对齐的直接法进行初始位姿估计;后端采用共视图的方法,以当前帧的二级相邻共视关键帧范围为局部优化窗口,利用光束平差法(Bundle Adjustment,BA)对系统状态变量进行优化;另外,仅对关键帧提取ORB特征点,并计算描述子信息供回环检测使用。在TUM VI数据集上的实验证明,与ORB-SLAM3和VINS-mono相比,该算法提高了系统的定位精度,且位姿估计速度提高了50%以上,在一帧完整跟踪任务中,比VINS-mono实时性提高了26%。 展开更多
关键词 视觉惯性slam系统 紧耦合 直接法前端 共视图
原文传递
基于动态边缘化的双目视觉惯性SLAM算法 被引量:3
19
作者 龚欢 何志琴 《计算机应用与软件》 北大核心 2022年第1期275-281,349,共8页
针对单目视觉惯性SLAM算法鲁棒性不高且尺度恢复困难的问题,提出基于动态边缘化的双目视觉惯性SLAM算法(DM-SVI-SLAM)。前端使用光流法进行特征跟踪,利用预积分计算帧间IMU,后端在滑动窗口内融合单/双目匹配点误差、IMU残差及先验误差... 针对单目视觉惯性SLAM算法鲁棒性不高且尺度恢复困难的问题,提出基于动态边缘化的双目视觉惯性SLAM算法(DM-SVI-SLAM)。前端使用光流法进行特征跟踪,利用预积分计算帧间IMU,后端在滑动窗口内融合单/双目匹配点误差、IMU残差及先验误差构建捆集调整的成本函数,利用动态边缘化策略、Dog-Leg算法提升计算效率,回环检测使用词袋方法对关键帧重定位。通过EuRoC数据集评估系统性能,实验结果表明,对比其他前沿VI-SLAM算法,该算法在精度和鲁棒性方面都具有潜力。 展开更多
关键词 同时定位与地图构建 视觉惯性系统 光流跟踪 捆集调整 动态边缘化 Dog-Leg算法
在线阅读 下载PDF
鲁棒的非线性优化的立体视觉-惯导SLAM 被引量:8
20
作者 林辉灿 吕强 +2 位作者 王国胜 卫恒 梁冰 《机器人》 EI CSCD 北大核心 2018年第6期911-920,共10页
针对基于视觉特征的同时定位与地图构建(SLAM)系统在图像模糊、运动过快和特征缺失的情况下存在鲁棒性和精度急剧下降甚至失败的问题,提出了紧耦合的非线性优化的立体视觉-惯导SLAM系统.首先,以关键帧的位姿作为约束,采用分而治之的策... 针对基于视觉特征的同时定位与地图构建(SLAM)系统在图像模糊、运动过快和特征缺失的情况下存在鲁棒性和精度急剧下降甚至失败的问题,提出了紧耦合的非线性优化的立体视觉-惯导SLAM系统.首先,以关键帧的位姿作为约束,采用分而治之的策略估计惯性测量单元(IMU)的偏差.在前端,针对ORB-SLAM2在跟踪过程中由于运动过快导致匀速运动模型失效的问题,通过预积分上一帧到当前帧的IMU数据,预测当前帧的初始位姿,并在位姿优化中加入了IMU预积分约束.然后,在后端优化中,在滑动窗口内优化关键帧的位姿、地图点和IMU预积分,并更新IMU的偏差.最后,通过EuRoC数据集验证该系统的性能,对比ORB-SLAM2系统、VINS-Mono系统和OKVIS系统,该系统的精度分别提高了1.14倍、1.48倍和4.59倍;相比前沿的SLAM系统,该系统在快速运动、图像模糊和特征缺失条件下的鲁棒性也得到了提高. 展开更多
关键词 计算机视觉 同时定位与地图构建 传感器融合 视觉-惯导系统 紧耦合 状态估计
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部