期刊文献+
共找到355,747篇文章
< 1 2 250 >
每页显示 20 50 100
Synapses and dendritic spines are eliminated in the primary visual cortex of mice subjected to chronic intraocular pressure elevation
1
作者 Xinyi Zhang Deling Li +6 位作者 Weiting Zeng Yiru Huang Zongyi Zhan Yuning Zhang Qinyuan Hu Lianyan Huang Minbin Yu 《Neural Regeneration Research》 2026年第3期1236-1248,共13页
Synaptic plasticity is essential for maintaining neuronal function in the central nervous system and serves as a critical indicator of the effects of neurodegenerative disease.Glaucoma directly impairs retinal ganglio... Synaptic plasticity is essential for maintaining neuronal function in the central nervous system and serves as a critical indicator of the effects of neurodegenerative disease.Glaucoma directly impairs retinal ganglion cells and their axons,leading to axonal transport dysfuntion,subsequently causing secondary damage to anterior or posterior ends of the visual system.Accordingly,recent evidence indicates that glaucoma is a degenerative disease of the central nervous system that causes damage throughout the visual pathway.However,the effects of glaucoma on synaptic plasticity in the primary visual cortex remain unclear.In this study,we established a mouse model of unilateral chronic ocular hypertension by injecting magnetic microbeads into the anterior chamber of one eye.We found that,after 4 weeks of chronic ocular hypertension,the neuronal somas were smaller in the superior colliculus and lateral geniculate body regions of the brain contralateral to the affected eye.This was accompanied by glial cell activation and increased expression of inflammatory factors.After 8 weeks of ocular hypertension,we observed a reduction in the number of excitatory and inhibitory synapses,dendritic spines,and activation of glial cells in the primary visual cortex contralateral to the affected eye.These findings suggest that glaucoma not only directly damages the retina but also induces alterations in synapses and dendritic spines in the primary visual cortex,providing new insights into the pathogenesis of glaucoma. 展开更多
关键词 chronic ocular hypertension dendritic spines GLAUcOMA glial cells NEUROINFLAMMATION NEURON retinal ganglion cells synaptic plasticity visual cortex visual pathway
暂未订购
Erratum to"GenomeSyn:a bioinformatics tool for visualizing genome synteny and structural variations"[J.Genet.Genom.(2022)49,11741176]
2
作者 Zu-Wen Zhou Zhi-Guang Yu +4 位作者 Xiao-Ming Huang Jin-Shen Liu Yi-Xiong Guo Ling-Ling Chen Jia-Ming Song 《Journal of Genetics and Genomics》 2025年第8期1068-1069,共2页
Fig.1.The GenomeSyn tool for visualizing genome synteny and characterizing structural variations.A:The first synteny visualization map showed the detailed information of two or three genomes and can display structural... Fig.1.The GenomeSyn tool for visualizing genome synteny and characterizing structural variations.A:The first synteny visualization map showed the detailed information of two or three genomes and can display structural variations and other annotation information.B:The second type of visualization map was simple and only showed the synteny relationship between the chromosomes of two or three genomes.C:Multiplatform general GenomeSyn submission page,applicable to Windows,MAC and web platforms;other analysis files can be entered in the"other"option.The publisher would like to apologise for any inconvenience caused. 展开更多
关键词 two three genomes structural variations synteny relationship genomesyn visualizing genome synteny characterizing structural variationsa genome synteny synteny visualization map
原文传递
Effective convolution mixed Transformer Siamese network for robust visual tracking
3
作者 Lin Chen Yungang Liu Yuan Wang 《Control Theory and Technology》 2025年第2期221-236,共16页
Siamese tracking algorithms usually take convolutional neural networks(CNNs)as feature extractors owing to their capability of extracting deep discriminative features.However,the convolution kernels in CNNs have limit... Siamese tracking algorithms usually take convolutional neural networks(CNNs)as feature extractors owing to their capability of extracting deep discriminative features.However,the convolution kernels in CNNs have limited receptive fields,making it difficult to capture global feature dependencies which is important for object detection,especially when the target undergoes large-scale variations or movement.In view of this,we develop a novel network called effective convolution mixed Transformer Siamese network(SiamCMT)for visual tracking,which integrates CNN-based and Transformer-based architectures to capture both local information and long-range dependencies.Specifically,we design a Transformer-based module named lightweight multi-head attention(LWMHA)which can be flexibly embedded into stage-wise CNNs and improve the network’s representation ability.Additionally,we introduce a stage-wise feature aggregation mechanism which integrates features learned from multiple stages.By leveraging both location and semantic information,this mechanism helps the SiamCMT to better locate and find the target.Moreover,to distinguish the contribution of different channels,a channel-wise attention mechanism is introduced to enhance the important channels and suppress the others.Extensive experiments on seven challenging benchmarks,i.e.,OTB2015,UAV123,GOT10K,LaSOT,DTB70,UAVTrack112_L,and VOT2018,demonstrate the effectiveness of the proposed algorithm.Specially,the proposed method outperforms the baseline by 3.5%and 3.1%in terms of precision and success rates with a real-time speed of 59.77 FPS on UAV123. 展开更多
关键词 visual tracking Siamese network TRANSFORMER Feature aggregation channel-wise attention
原文传递
VPM-Net:Person Re-ID Network Based on Visual Prompt Technology and Multi-Instance Negative Pooling
4
作者 Haitao Xie Yuliang Chen +3 位作者 Yunjie Zeng Lingyu Yan Zhizhi Wang Zhiwei Ye 《Computers, Materials & Continua》 2025年第5期3389-3410,共22页
With the rapid development of intelligent video surveillance technology,pedestrian re-identification has become increasingly important inmulti-camera surveillance systems.This technology plays a critical role in enhan... With the rapid development of intelligent video surveillance technology,pedestrian re-identification has become increasingly important inmulti-camera surveillance systems.This technology plays a critical role in enhancing public safety.However,traditional methods typically process images and text separately,applying upstream models directly to downstream tasks.This approach significantly increases the complexity ofmodel training and computational costs.Furthermore,the common class imbalance in existing training datasets limitsmodel performance improvement.To address these challenges,we propose an innovative framework named Person Re-ID Network Based on Visual Prompt Technology andMulti-Instance Negative Pooling(VPM-Net).First,we incorporate the Contrastive Language-Image Pre-training(CLIP)pre-trained model to accurately map visual and textual features into a unified embedding space,effectively mitigating inconsistencies in data distribution and the training process.To enhancemodel adaptability and generalization,we introduce an efficient and task-specific Visual Prompt Tuning(VPT)technique,which improves the model’s relevance to specific tasks.Additionally,we design two key modules:the Knowledge-Aware Network(KAN)and theMulti-Instance Negative Pooling(MINP)module.The KAN module significantly enhances the model’s understanding of complex scenarios through deep contextual semantic modeling.MINP module handles samples,effectively improving the model’s ability to distinguish fine-grained features.The experimental outcomes across diverse datasets underscore the remarkable performance of VPM-Net.These results vividly demonstrate the unique advantages and robust reliability of VPM-Net in fine-grained retrieval tasks. 展开更多
关键词 Person re-identification multi-instance negative pooling visual prompt tuning
在线阅读 下载PDF
Enhanced Fire Detection System for Blind and Visually Challenged People Using Artificial Intelligence with Deep Convolutional Neural Networks
5
作者 Fahd N.Al-Wesabi Hamad Almansour +1 位作者 Huda G.Iskandar Ishfaq Yaseen 《Computers, Materials & Continua》 2025年第12期5765-5787,共23页
Earlier notification and fire detection methods provide safety information and fire prevention to blind and visually impaired(BVI)individuals in a limited timeframe in the event of emergencies,particularly in enclosed... Earlier notification and fire detection methods provide safety information and fire prevention to blind and visually impaired(BVI)individuals in a limited timeframe in the event of emergencies,particularly in enclosed areas.Fire detection becomes crucial as it directly impacts human safety and the environment.While modern technology requires precise techniques for early detection to prevent damage and loss,few research has focused on artificial intelligence(AI)-based early fire alert systems for BVI individuals in indoor settings.To prevent such fire incidents,it is crucial to identify fires accurately and promptly,and alert BVI personnel using a combination of smart glasses,deep learning(DL),and computer vision(CV).The most recent technologies require effective methods to identify fires quickly,preventing damage and physical loss.In this manuscript,an Enhanced Fire Detection System for Blind and Visually Challenged People using Artificial Intelligence with Deep Convolutional Neural Networks(EFDBVC-AIDCNN)model is presented.The EFDBVC-AIDCNN model presents an advanced fire detection system that utilizes AI to detect and classify fire hazards for BVI people effectively.Initially,image pre-processing is performed using the Gabor filter(GF)model to improve texture details and patterns specific to flames and smoke.For the feature extractor,the Swin transformer(ST)model captures fine details across multiple scales to represent fire patterns accurately.Furthermore,the Elman neural network(ENN)technique is implemented to detect fire.The improved whale optimization algorithm(IWOA)is used to efficiently tune ENN parameters,improving accuracy and robustness across varying lighting and environmental conditions to optimize performance.An extensive experimental study of the EFDBVC-AIDCNN technique is accomplished under the fire detection dataset.A short comparative analysis of the EFDBVC-AIDCNN approach portrayed a superior accuracy value of 96.60%over existing models. 展开更多
关键词 Fire detection swin transformer visually challenged people artificial intelligence computer vision image pre-processing
在线阅读 下载PDF
DIEONet:Domain-Invariant Information Extraction and Optimization Network for Visual Place Recognition
6
作者 Shaoqi Hou Zebang Qin +3 位作者 Chenyu Wu Guangqiang Yin Xinzhong Wang Zhiguo Wang 《Computers, Materials & Continua》 2025年第3期5019-5033,共15页
Visual Place Recognition(VPR)technology aims to use visual information to judge the location of agents,which plays an irreplaceable role in tasks such as loop closure detection and relocation.It is well known that pre... Visual Place Recognition(VPR)technology aims to use visual information to judge the location of agents,which plays an irreplaceable role in tasks such as loop closure detection and relocation.It is well known that previous VPR algorithms emphasize the extraction and integration of general image features,while ignoring the mining of salient features that play a key role in the discrimination of VPR tasks.To this end,this paper proposes a Domain-invariant Information Extraction and Optimization Network(DIEONet)for VPR.The core of the algorithm is a newly designed Domain-invariant Information Mining Module(DIMM)and a Multi-sample Joint Triplet Loss(MJT Loss).Specifically,DIMM incorporates the interdependence between different spatial regions of the feature map in the cascaded convolutional unit group,which enhances the model’s attention to the domain-invariant static object class.MJT Loss introduces the“joint processing of multiple samples”mechanism into the original triplet loss,and adds a new distance constraint term for“positive and negative”samples,so that the model can avoid falling into local optimum during training.We demonstrate the effectiveness of our algorithm by conducting extensive experiments on several authoritative benchmarks.In particular,the proposed method achieves the best performance on the TokyoTM dataset with a Recall@1 metric of 92.89%. 展开更多
关键词 visual place recognition domain-invariant information mining module multi-sample joint triplet loss
在线阅读 下载PDF
SFFSlib:A Python library for optimizing attribute layouts from micro to macro scales in network visualization
7
作者 Ke-Chao Zhang Sheng-Yue Jiang Jing Xiao 《Chinese Physics B》 2025年第5期124-138,共15页
Complex network modeling characterizes system relationships and structures,while network visualization enables intuitive analysis and interpretation of these patterns.However,existing network visualization tools exhib... Complex network modeling characterizes system relationships and structures,while network visualization enables intuitive analysis and interpretation of these patterns.However,existing network visualization tools exhibit significant limitations in representing attributes of complex networks at various scales,particularly failing to provide advanced visual representations of specific nodes and edges,community affiliation attribution,and global scalability.These limitations substantially impede the intuitive analysis and interpretation of complex network patterns through visual representation.To address these limitations,we propose SFFSlib,a multi-scale network visualization framework incorporating novel methods to highlight attribute representation in diverse network scenarios and optimize structural feature visualization.Notably,we have enhanced the visualization of pivotal details at different scales across diverse network scenarios.The visualization algorithms proposed within SFFSlib were applied to real-world datasets and benchmarked against conventional layout algorithms.The experimental results reveal that SFFSlib significantly enhances the clarity of visualizations across different scales,offering a practical solution for the advancement of network attribute representation and the overall enhancement of visualization quality. 展开更多
关键词 complex network visualization layout algorithm signed network fuzzy community structure social bot network
原文传递
MATLAB与Visual C#.NET混合编程 被引量:15
8
作者 焦纲领 邓建辉 韩啸 《海军航空工程学院学报》 2008年第1期109-111,共3页
在分析MATLAB与Visual C#.NET通用性和优缺点的基础上,介绍了MATLAB和Visual C#.NET混合编程的设计思想和编程特点。接着具体给出了基于visual C#.NET开发应用程序调用MATLAB算法的实现方法,并重点结合实例闸述了运用COM组件技术... 在分析MATLAB与Visual C#.NET通用性和优缺点的基础上,介绍了MATLAB和Visual C#.NET混合编程的设计思想和编程特点。接着具体给出了基于visual C#.NET开发应用程序调用MATLAB算法的实现方法,并重点结合实例闸述了运用COM组件技术混合编程的具体步骤和注意事项。 展开更多
关键词 MATLAB visual c#.net 混合编程 cOM
在线阅读 下载PDF
用Visual C++.NET实现实时在线监督系统设计与开发——在高温气冷堆上的应用及技术特点分析 被引量:8
9
作者 王永辉 胡守印 《计算机工程与应用》 CSCD 北大核心 2004年第17期208-211,共4页
该文通过介绍高温气冷堆(HTR-10)技术规格书在线监督系统的应用及开发模型,分析了用VisualC++.NET进行实时在线监督系统设计与开发过程中ADO数据库技术、多线程应用、网络数据传输、数据图形曲线实时动态绘制等方面的技术开发特点。
关键词 高温气冷堆(HTR-10) 实时在线监督 visual c++.net 技术特点
在线阅读 下载PDF
基于Visual C#.NET的模糊聚类分析系统及其应用 被引量:2
10
作者 王新洲 陈艳艳 万斐 《地理空间信息》 2007年第3期1-4,共4页
由于事物的区分通常具有模糊性,采用模糊聚类方法进行分类更符合实际。介绍了模糊聚类分析的基本思想,用传递闭包法进行聚类分析,基于Visual C#.NET语言研制了一个模糊聚类分析系统,并应用于形变监测网的分析。结果显示,其分类结果符合... 由于事物的区分通常具有模糊性,采用模糊聚类方法进行分类更符合实际。介绍了模糊聚类分析的基本思想,用传递闭包法进行聚类分析,基于Visual C#.NET语言研制了一个模糊聚类分析系统,并应用于形变监测网的分析。结果显示,其分类结果符合实际要求。 展开更多
关键词 模糊聚类分析 visual c#.net 传递闭包法
在线阅读 下载PDF
包装纸盒设计系统──Visual Basic.NET二次开发AutoCAD 被引量:7
11
作者 迟建 李晓娟 +2 位作者 于志彬 陈志周 赵红梅 《包装工程》 CAS CSCD 北大核心 2005年第6期96-98,共3页
以AutoCAD为平台,并选择V isual Basic.NET作为二次开发语言,建立了具有平面盒坯图的参数化设计、纸盒自动折叠成型的动画演示、三维实体的渲染等功能的包装纸盒设计系统,为包装CAD提供一种新的方法。
关键词 visual Basic net 包装纸盒 参数化设计 三维动画 实体渲染
在线阅读 下载PDF
基于Visual C++.NET的昆虫图像自动识别系统的研究 被引量:4
12
作者 周红 王宏坡 《天津农学院学报》 CAS 2005年第2期39-41,53,共4页
随着软件技术的迅速发展以及数字图像处理技术的广泛应用,自动识别系统将越来越成为现代社会的一种必然应用趋势。针对当前农业中存在的虫害威胁,本文从图像处理技术出发,利用VisualC++.NET作为平台,开发了一套昆虫图像自动识别软件系统... 随着软件技术的迅速发展以及数字图像处理技术的广泛应用,自动识别系统将越来越成为现代社会的一种必然应用趋势。针对当前农业中存在的虫害威胁,本文从图像处理技术出发,利用VisualC++.NET作为平台,开发了一套昆虫图像自动识别软件系统,来对常见昆虫模式进行特征提取,然后再进行聚类分析,从而达到对测控对象进行自动测试和识别的目的。在实际应用当中,主要以获得昆虫图像为对象,并在静态情况下得出了比较满意的结果。 展开更多
关键词 visual c++.net 昆虫 数字图像处理 边缘检测
在线阅读 下载PDF
基于Visual C^#.NET的废石充填仿真程序的初步研究 被引量:1
13
作者 姜谙男 孙豁然 郑建明 《云南冶金》 2002年第2期9-12,共4页
基于VisualC# NET ,进行了废石充填散体的二维仿真程序的初步研究。介绍了开发工具、对象的描述及数据结构、建立模型应注意的问题及程序设计等。通过编程实践我们发现 ,VisualC#
关键词 废石充填 散体 visual c^#.net 仿真 充填采矿法
在线阅读 下载PDF
Visual C#.NET应用于快速分析计算 被引量:1
14
作者 李萍 唐帆 王伟 《盐城工学院学报(自然科学版)》 CAS 2011年第4期69-72,共4页
分析化学的一个发展趋势是将中心实验室变成手持的便携、快速的检测仪器,又称做"Hand-held Lab-on-a-chip"。手持设备的研究,除在分析检测方法中需要改进提高以外,在数据处理方面也要达到快速、准确、直观的要求。提出通过便... 分析化学的一个发展趋势是将中心实验室变成手持的便携、快速的检测仪器,又称做"Hand-held Lab-on-a-chip"。手持设备的研究,除在分析检测方法中需要改进提高以外,在数据处理方面也要达到快速、准确、直观的要求。提出通过便携设备的快速加标法和内标法处理数据,以Visual C#.NET语言编写数据处理程序,可达到快速检测设备的数据处理要求。 展开更多
关键词 visual c#.net 便携式设备 数据处理
在线阅读 下载PDF
基于Visual C++.NET的Pro/E二次开发过程研究 被引量:3
15
作者 肖锋 张超群 邹艳红 《机械工程与自动化》 2008年第1期75-76,共2页
在Visual C++.NET环境中开发Pro/Toolkit应用程序是对Pro/E二次开发的有效手段。基于对VisualC++.NET和Pro/Toolkit接口的研究,主要介绍了利用Visual C++.NET开发Pro/Toolkit应用程序的步骤。
关键词 二次开发 visual c++.net PRO/TOOLKIT
在线阅读 下载PDF
基于Visual C^(++) .NET的Pro/E参数化设计研究 被引量:3
16
作者 崔宣 黄伟忠 《机械工程与自动化》 2009年第4期190-191,共2页
在Visual C++ .NET环境中开发Pro/Toolkit应用程序是对Pro/E二次开发的有效手段。主要介绍了利用Visual C++ .NET开发Pro/Toolkit应用程序的步骤,并以参数化设计系统的开发为例进行了说明。
关键词 二次开发 visual c++.net PRO/TOOLKIT
在线阅读 下载PDF
基于Visual C#.NET的参数驱动型瓦楞纸箱CAD系统开发 被引量:1
17
作者 姜无疾 戴跃洪 +1 位作者 魏静 任了行 《四川工业学院学报》 2004年第4期21-23,共3页
 作者以VisualC#.NET为开发平台,设计开发了一个实用的瓦楞纸箱CAD系统,其功能涉及箱型选择、纸板选型、尺寸计算、强度校核以及CAM接口数据输出等。该系统具有参数驱动之特点。
关键词 参数驱动 瓦楞纸箱 cAD visual c#.net
在线阅读 下载PDF
多线程技术在Visual Basic.Net中的应用 被引量:6
18
作者 乌云高娃 《计算机工程与设计》 CSCD 2004年第4期632-633,636,共3页
使用多线程技术可以充分利用Windows系统的丰富资源,是Windows系统的重要特点。多线程应用程 序对可用资源的高效分配使系统性能得到显著提高。阐述了Windows系统的多线程技术机制,对如何在Visual Basic.Net中实现多线程任务做了一个技... 使用多线程技术可以充分利用Windows系统的丰富资源,是Windows系统的重要特点。多线程应用程 序对可用资源的高效分配使系统性能得到显著提高。阐述了Windows系统的多线程技术机制,对如何在Visual Basic.Net中实现多线程任务做了一个技术方法探讨和实际经验介绍。 展开更多
关键词 多线程技术 进程 线程同步 资源分配 WINDOWS系统 visual BASIc.net
在线阅读 下载PDF
3-D visual tracking based on CMAC neural network and Kalman filter 被引量:3
19
作者 王化明 罗翔 朱剑英 《Journal of Southeast University(English Edition)》 EI CAS 2003年第1期58-63,共6页
In this paper, the Kalman filter is used to predict image feature positionaround which an image-processing window is then established to diminish feature-searching area andto heighten the image-processing speed. Accor... In this paper, the Kalman filter is used to predict image feature positionaround which an image-processing window is then established to diminish feature-searching area andto heighten the image-processing speed. According to the fundamentals of image-based visual servoing(IBVS), the cerebellar model articulation controller (CMAC) neural network is inserted into thevisual servo control loop to implement the nonlinear mapping from the error signal in the imagespace to the control signal in the input space instead of the iterative adjustment and complicatedinverse solution of the image Jacobian. Simulation results show that the feature point can bepredicted efficiently using the Kalman filter and on-line supervised learning can be realized usingCMAC neural network; end-effector can track the target object very well. 展开更多
关键词 visual tracking cMAc neural network Kalman filter
在线阅读 下载PDF
ASP.NET中Visual Basic.NET、JavaScript.NET和C#语言的区别 被引量:1
20
作者 贺军 李喜梅 《长春师范学院学报(自然科学版)》 2004年第2期40-44,共5页
ASP.NET是微软推出新一代基于通用语言的编程框架,目前,ASP.NET支持3种缩程语言。本文将这三种脚本编写语言在开发ASP.NET程序过程中的异同点进行了比较,以便于读者对这三种语言的学习和掌握。
关键词 ASP.net BASIc.net c#语言 编程语言 通用语言 新一代 微软 脚本编写 异同点 读者
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部