Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances a...Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances and flexible func-tionalities.In this review,based on a description of the biological adaptive functions that are favorable for dynamically perceiv-ing,filtering,and processing information in the varying environment,we summarize the representative strategies for achiev-ing these adaptabilities in optoelectronic transistors,including the adaptation for detecting information,adaptive synaptic weight change,and history-dependent plasticity.Moreover,the key points of the corresponding strategies are comprehen-sively discussed.And the applications of these adaptive optoelectronic transistors,including the adaptive color detection,sig-nal filtering,extending the response range of light intensity,and improve learning efficiency,are also illustrated separately.Lastly,the challenges faced in developing adaptive optoelectronic transistor for artificial vision system are discussed.The descrip-tion of biological adaptive functions and the corresponding inspired neuromorphic devices are expected to provide insights for the design and application of next-generation artificial visual systems.展开更多
Limited by the planar imaging structure,the commercial camera needs to introduce additional optical elements to compensate for the curved focal plane to match the planar image sensor.This results in a complex and bulk...Limited by the planar imaging structure,the commercial camera needs to introduce additional optical elements to compensate for the curved focal plane to match the planar image sensor.This results in a complex and bulky structure.In contrast,biological eyes possess a simple and compact structure due to their curved imaging structure that can directly match with the curved focal plane.Inspired by the structures and functions of biological eyes,curved vision systems not only improve the image quality,but also offer a variety of advanced functions.Here,we review the recent advances in bioinspired vision systems with curved imaging structures.Specifically,we focus on their applications in implementing different functions of biological eyes,as well as the emerging curved neuromorphic imaging systems that incorporate bioinspired optical and neuromorphic processing technologies.In addition,the challenges and opportunities of bioinspired curved imaging systems are also discussed.展开更多
Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which m...Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which makes the global calibration of the vision system quite difficult.The primary existing solution relies on large-scale surveying equipments,which is ponderous and inconvenient for field calibrations.In this paper,a global calibration method of multi-sensor vision system is proposed and investigated.The proposed method utilizes pairs of skew laser lines,which are generated by a group of laser pointers,as the calibration objects.Each pair of skew laser lines provides a unique coordinate system in space which can be reconstructed in certain vision sensor's coordinates by using a planar pattern.Then the geometries of sensors are computed under rigid transformation constrains by taking coordinates of each skew lines pair as the intermediary.The method is applied on both visual cameras with synthetic data and a real two-camera vision system;results show the validity and good performance.The prime contribution of this paper is taking skew laser lines as the global calibration objects,which makes the method simple and flexible.The method need no expensive equipments and can be used in large-scale calibration.展开更多
Coal is heterogeneous in nature,and thus the characterization of coal is essential before its use for a specific purpose.Thus,the current study aims to develop a machine vision system for automated coal characterizati...Coal is heterogeneous in nature,and thus the characterization of coal is essential before its use for a specific purpose.Thus,the current study aims to develop a machine vision system for automated coal characterizations.The model was calibrated using 80 image samples that are captured for different coal samples in different angles.All the images were captured in RGB color space and converted into five other color spaces(HSI,CMYK,Lab,xyz,Gray)for feature extraction.The intensity component image of HSI color space was further transformed into four frequency components(discrete cosine transform,discrete wavelet transform,discrete Fourier transform,and Gabor filter)for the texture features extraction.A total of 280 image features was extracted and optimized using a step-wise linear regression-based algorithm for model development.The datasets of the optimized features were used as an input for the model,and their respective coal characteristics(analyzed in the laboratory)were used as outputs of the model.The R-squared values were found to be 0.89,0.92,0.92,and 0.84,respectively,for fixed carbon,ash content,volatile matter,and moisture content.The performance of the proposed artificial neural network model was also compared with the performances of performances of Gaussian process regression,support vector regression,and radial basis neural network models.The study demonstrates the potential of the machine vision system in automated coal characterization.展开更多
The fast paced nature of robotic soccer necessitates real time sensing coupled with quick behaving and decision making. In the field with real robots, it is important to well perceive the location of ball, team robots...The fast paced nature of robotic soccer necessitates real time sensing coupled with quick behaving and decision making. In the field with real robots, it is important to well perceive the location of ball, team robots and opponent robots through the vision system in real time. In this paper the architecture of global vision system of our small size robotic team and the process of object recognition is described. According to the study on color distribution in different color space and quantitative investigation, a method which uses H (Hue) thresholds as the major thresholds to feature exact and recognize object in real time is presented.展开更多
An optical inspection method of the Ball Grid Array package(BGA) was proposed by using a machine vision system. The developed machine vision system could get main critical factors for BGA quality evaluation, such as t...An optical inspection method of the Ball Grid Array package(BGA) was proposed by using a machine vision system. The developed machine vision system could get main critical factors for BGA quality evaluation, such as the height of solder ball, diameter, pitch and coplanarity. The experiment has proved that this system is available for BGA failure detection.展开更多
This paper proposes the solution of tasks set required for autonomous robotic group behavior optimization during the mission on a distributed area in a cluttered hazardous terrain.The navigation scheme uses the benefi...This paper proposes the solution of tasks set required for autonomous robotic group behavior optimization during the mission on a distributed area in a cluttered hazardous terrain.The navigation scheme uses the benefits of the original real-time technical vision system(TVS)based on a dynamic triangulation principle.The method uses TVS output data with fuzzy logic rules processing for resolution stabilization.Based on previous researches,the dynamic communication network model is modified to implement the propagation of information with a feedback method for more stable data exchange inside the robotic group.According to the comparative analysis of approximation methods,in this paper authors are proposing to use two-steps post-processing path planning aiming to get a smooth and energy-saving trajectory.The article provides a wide range of studies and computational experiment results for different scenarios for evaluation of common cloud point influence on robotic motion planning.展开更多
This paper describes specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC-based hardware architecture is convenient in this field because of its versatility, flexibility, pe...This paper describes specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC-based hardware architecture is convenient in this field because of its versatility, flexibility, performance, and cost, current real-time operating systems are not completely adapted to long processing with varying duration, and it is often necessary to oversize the system to guarantee fail-safe functioning. Also, interactions with other robotic tasks having more priority are difficult to handle. To answer this problem, we have developed a dynamically reconfigurable vision processing system, based on the innovative features of Cleopatre real-time applicative layer concerning scheduling and fault tolerance. This framework allows to define emergency and optional tasks to ensure a minimal quality of service for the other subsystems of the robot, while allowing to adapt dynamically vision processing chain to an exceptional overlasting vision process or processor overload. Thus, it allows a better cohabitation of several subsystems in a single hardware, and to develop less expensive but safe systems, as they will be designed for the regular case and not rare exceptional ones. Finally, it brings a new way to think and develop vision systems, with pairs of complementary operators.展开更多
Based on the characteristics of line structured light sensor, a speedy method for the calibration was established. With the coplanar reference target, the spacial pose between camera and optical plane can be calibrate...Based on the characteristics of line structured light sensor, a speedy method for the calibration was established. With the coplanar reference target, the spacial pose between camera and optical plane can be calibrated by using of the camera’s projective center and the light’s information in the camera’s image surface. Without striction to the movement of the coplanar reference target and assistant adjustment equipment, this calibration method can be implemented. This method has been used and decreased the cost of calibration equipment, simplified the calibration procedure, improved calibration efficiency. Using experiment, the sensor can attain relative accuracy about 0.5%, which indicates the rationality and effectivity of this method.展开更多
In the visual positioning of Unmanned Ground Vehicle(UGV),the visual odometer based on direct sparse method(DSO) has the advantages of small amount of calculation,high real-time performance and high robustness,so it i...In the visual positioning of Unmanned Ground Vehicle(UGV),the visual odometer based on direct sparse method(DSO) has the advantages of small amount of calculation,high real-time performance and high robustness,so it is more widely used than the visual odometer based on feature point method.Ordinary vision sensors have a narrower viewing angle than panoramic vision sensors,and there are fewer road signs in a single frame of image,resulting in poor road sign tracking and positioning capabilities,and severely restricting the development of visual odometry.Based on these considerations,this paper proposes a binocular stereo panoramic vision positioning algorithm based on extended DSO,which can solve these problems well.The experimental results show that the binocular stereo panoramic vision positioning algorithm based on the extended DSO can directly obtain the panoramic depth image around the UGV,which greatly improves the accuracy and robustness of the visual positioning compared with other ordinary visual odometers.It will have widely application prospects in the UGV field in the future.展开更多
To improve the identification for visual defect of TFF-LCD, a new machine vision system is proposed, which is superior to human eye inspection. The system respectively employs a CCD camera to capture the image of TFT-...To improve the identification for visual defect of TFF-LCD, a new machine vision system is proposed, which is superior to human eye inspection. The system respectively employs a CCD camera to capture the image of TFT-LCD panel and an image processing system to identify potential visual defects. Image pre-processing, such as average filtering and geometric correction, was performed on the captured image, and then a candidate area of defect was segmented from the background. Feature information extracted from the area of interest entered a fuzzy rule-based classifier that simulated the defect inspection of TFT-LCD undertaken by experienced technicians. Experiment results show that the machine vision system can obtain fast, objective and accurate inspection compared with subjective and inaccurate human eye inspection.展开更多
A design of low-light-level night vision system is described,which can image objects selectively in the specific space. The system can selectively image some objects in specific distances,meanwhile ignore those shelte...A design of low-light-level night vision system is described,which can image objects selectively in the specific space. The system can selectively image some objects in specific distances,meanwhile ignore those shelters on the way of observation by combining an intensifying charge coupled device(ICCD) with a near infrared laser assisted in vision,whose operation wavelength matches with the photocathode of the image tube,and adopting the gated mode and adjustable time-delay. A semiconductor laser diode of 100 W in peak power is chosen for illumination. The laser and the image tube operate in 150 ns pulse width and 2 kHz repeat frequency. Some images of different objects at the different distances within 100 m can be obtained clearly,and even behind a grove by using a sampling circuit and a delay control device at 100 W in peak power of semiconductor laser diode,150 ns in pulse width of laser and image tube,2 kHz in repeat frequency.展开更多
This study assessed the feasibility of developing a machine vision system equipped with ultraviolet (UV) light, using changes in fish-surface color to predict aerobic plate count (APC, a standard freshness indicator) ...This study assessed the feasibility of developing a machine vision system equipped with ultraviolet (UV) light, using changes in fish-surface color to predict aerobic plate count (APC, a standard freshness indicator) during storage. The APC values were tested and images of the fish surface were taken when fish were stored at room temperature. Then, images</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span><span><span><span> color-space conversion among RGB, HSV, and L*a*b* color spaces was carried out and analyzed. The results revealed that a* and b* values from the UV-light image decreased linearly during storage. A further regression analysis of these two parameters with APC value demonstrated a good exponential relationship between the a* value and the APC value (R</span><sup><span>2</span></sup><span> = 0.97), followed by the b* (R</span><sup><span>2</span></sup><span> = 0.85). Therefore, our results suggest that the change in color of the fish surface under UV light can be used to assess fish freshness during storage.展开更多
In this paper,we present a robot vision based system for coordinate measurement of feature points on large scale automobile parts.Our system consists of an industrial 6-DOF robot mounted with a CCD camera and a PC.The...In this paper,we present a robot vision based system for coordinate measurement of feature points on large scale automobile parts.Our system consists of an industrial 6-DOF robot mounted with a CCD camera and a PC.The system controls the robot into the area of feature points.The images of measuring feature points are acquired by the camera mounted on the robot.3D positions of the feature points are obtained from a model based pose estimation that applies to the images.The measured positions of all feature points are then transformed to the reference coordinate of feature points whose positions are obtained from the coordinate measuring machine(CMM).Finally,the point-to-point distances between the measured feature points and the reference feature points are calculated and reported.The results show that the root mean square error(RMSE) of measure values obtained by our system is less than 0.5 mm.Our system is adequate for automobile assembly and can perform faster than conventional methods.展开更多
Rotational Vision System(RVS)is a common active vision system with only rotational degrees of freedom.Usually,the degree of freedom for rotation is provided by the turntable and pan head.Or the hand to eye(EIH)structu...Rotational Vision System(RVS)is a common active vision system with only rotational degrees of freedom.Usually,the degree of freedom for rotation is provided by the turntable and pan head.Or the hand to eye(EIH)structure in articulated arm robots.Due to assembly deviations and manufacturing accuracy limitations,the ideal assumption that the rotation axis is fully aligned with the coordinate axis of the local camera is mostly violated.To address this issue,we propose a generalized deviation model that specifies a rotation axis that connects the rotational motion of the platform with the external orientation(EO)of the camera.On this basis,we propose a heuristic estimation algorithm to minimize global reprojection errors and fit circles in space under constraints of global optimization.The experiment shows that the translation and tilt average reprojection errors of dynamic EO reconstruction based on the reprojection error method are 0.14 and 0.08 pixels,respectively.In the absence of angle measurement,the results of the circle fitting method are similar to them(with a relative error of about 2%),meeting the application requirements of general visual measurement.展开更多
Background: The small nematode Caenorhabditis elegans (C.elegans) is an excellent model organism for studying the molecular and cellular basis of nervous system function. Since
This paper discusses the coordination process for a robot gripper to approach a movingobject with feedback from an uncalibrated visual system. The dynamic of the whole system, includingtarget's random motion and t...This paper discusses the coordination process for a robot gripper to approach a movingobject with feedback from an uncalibrated visual system. The dynamic of the whole system, includingtarget's random motion and the gripper's tracking motion, is bounded to a 2-D working plane. Acamera, whose relations with the robot system and the 2-D working plane are unknown to the robotcontroller, is fixed aside to observe the object and gripper positions continually. Thus the movementsof the robot gripper can be decided on the positions of the object observed in each visual samplingmoment. The coordination of the vision and robot system is to be shown independently from therelations between the robot and the vision system, which should always be calibrated a prior forthe control of traditional robot/vision coordination system. Simulations are provided to show theproperty of the proposed method.展开更多
Autonomous functions including mapping and path planning are very important to ensure effcient exploration and safe navigation of unmanned rover. Conventional navigation schemes based on equipments such as GPS and mag...Autonomous functions including mapping and path planning are very important to ensure effcient exploration and safe navigation of unmanned rover. Conventional navigation schemes based on equipments such as GPS and magnetic sensors have been proven to be ineffective on lunar surface,while sophisticated dead reckoning approach lacks accuracy in loose soil due to slippage. In this paper,we propose a hybrid vision system(HVS) which consists of one stereo and one omnidirectional vision sensor,attempting to integrate the advantages of diverse vision systems. The hierarchical mapping reconstructs environment through HVS in different resolutions and structures,named qualitative,rough and detailed map. These maps are employed for path planning which navigates the rover towards specified destinations autonomously,avoiding obstacles in its way. The HVS aims at providing more effcient and safe navigation. Simulations and experiments demonstrate the functionality and advantage of our approach.展开更多
Cold Workability limits of Brass were studied as a function of friction, aspect ratio and specimen geometry. Five standard shapes of the axis symmetric specimens of cylindrical with aspect ratios 1.0 and 1.5, ring, ta...Cold Workability limits of Brass were studied as a function of friction, aspect ratio and specimen geometry. Five standard shapes of the axis symmetric specimens of cylindrical with aspect ratios 1.0 and 1.5, ring, tapered and flanged were selected for the present investigation. Specimens were deformed in compression between two flat platens to predict the metal flow at room temperature. The longitudinal and oblique cracks were obtained as the two major modes of surface fractures. Cylindrical and ring specimen shows the oblique surface crack while the tapered and flanged shows the longitudinal crack. Machine Vision system using PC based video recording with a CCD camera was used to analyze the deformation of 4 X 4 mm square grid marked at mid plane of the specimen. The strain paths obtained from different specimens exhibited nonlinearity from the beginning to the end of the strain path. The circumferential stress component Os increasingly becomes tensile with continued deformation. On the other hand the axial stress Oz , increased in the very initial stages of deformation but started becoming less compressive immediately as barreling develops. The nature of hydrostatic stress on the rim of the flanged specimen was found to be tensile. Finite element software ANSYS has been applied for the analysis of the upset forming process. When the stress values obtained from finite element analysis were compared to the measurements of grids using Machine Vision system it was found that they were in close proximity.展开更多
基金the National Key Research and Development Program of China(2021YFA0717900)National Natural Science Foundation of China(62471251,62405144,62288102,22275098,and 62174089)+1 种基金Basic Research Program of Jiangsu(BK20240033,BK20243057)Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB402).
文摘Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances and flexible func-tionalities.In this review,based on a description of the biological adaptive functions that are favorable for dynamically perceiv-ing,filtering,and processing information in the varying environment,we summarize the representative strategies for achiev-ing these adaptabilities in optoelectronic transistors,including the adaptation for detecting information,adaptive synaptic weight change,and history-dependent plasticity.Moreover,the key points of the corresponding strategies are comprehen-sively discussed.And the applications of these adaptive optoelectronic transistors,including the adaptive color detection,sig-nal filtering,extending the response range of light intensity,and improve learning efficiency,are also illustrated separately.Lastly,the challenges faced in developing adaptive optoelectronic transistor for artificial vision system are discussed.The descrip-tion of biological adaptive functions and the corresponding inspired neuromorphic devices are expected to provide insights for the design and application of next-generation artificial visual systems.
基金financially supported by the National Natural Science Foundation of China(Nos.52125205,U20A20166,61805015 and 61804011,52102184,52202181)the National key R&D program of China(Nos.2021YFB3200302 and 2021YFB3200304)the Fundamental Research Funds for the Central Universities。
文摘Limited by the planar imaging structure,the commercial camera needs to introduce additional optical elements to compensate for the curved focal plane to match the planar image sensor.This results in a complex and bulky structure.In contrast,biological eyes possess a simple and compact structure due to their curved imaging structure that can directly match with the curved focal plane.Inspired by the structures and functions of biological eyes,curved vision systems not only improve the image quality,but also offer a variety of advanced functions.Here,we review the recent advances in bioinspired vision systems with curved imaging structures.Specifically,we focus on their applications in implementing different functions of biological eyes,as well as the emerging curved neuromorphic imaging systems that incorporate bioinspired optical and neuromorphic processing technologies.In addition,the challenges and opportunities of bioinspired curved imaging systems are also discussed.
基金supported by National Natural Science Foundation of China (Grant No. 60804060)Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200800061003)
文摘Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which makes the global calibration of the vision system quite difficult.The primary existing solution relies on large-scale surveying equipments,which is ponderous and inconvenient for field calibrations.In this paper,a global calibration method of multi-sensor vision system is proposed and investigated.The proposed method utilizes pairs of skew laser lines,which are generated by a group of laser pointers,as the calibration objects.Each pair of skew laser lines provides a unique coordinate system in space which can be reconstructed in certain vision sensor's coordinates by using a planar pattern.Then the geometries of sensors are computed under rigid transformation constrains by taking coordinates of each skew lines pair as the intermediary.The method is applied on both visual cameras with synthetic data and a real two-camera vision system;results show the validity and good performance.The prime contribution of this paper is taking skew laser lines as the global calibration objects,which makes the method simple and flexible.The method need no expensive equipments and can be used in large-scale calibration.
文摘Coal is heterogeneous in nature,and thus the characterization of coal is essential before its use for a specific purpose.Thus,the current study aims to develop a machine vision system for automated coal characterizations.The model was calibrated using 80 image samples that are captured for different coal samples in different angles.All the images were captured in RGB color space and converted into five other color spaces(HSI,CMYK,Lab,xyz,Gray)for feature extraction.The intensity component image of HSI color space was further transformed into four frequency components(discrete cosine transform,discrete wavelet transform,discrete Fourier transform,and Gabor filter)for the texture features extraction.A total of 280 image features was extracted and optimized using a step-wise linear regression-based algorithm for model development.The datasets of the optimized features were used as an input for the model,and their respective coal characteristics(analyzed in the laboratory)were used as outputs of the model.The R-squared values were found to be 0.89,0.92,0.92,and 0.84,respectively,for fixed carbon,ash content,volatile matter,and moisture content.The performance of the proposed artificial neural network model was also compared with the performances of performances of Gaussian process regression,support vector regression,and radial basis neural network models.The study demonstrates the potential of the machine vision system in automated coal characterization.
文摘The fast paced nature of robotic soccer necessitates real time sensing coupled with quick behaving and decision making. In the field with real robots, it is important to well perceive the location of ball, team robots and opponent robots through the vision system in real time. In this paper the architecture of global vision system of our small size robotic team and the process of object recognition is described. According to the study on color distribution in different color space and quantitative investigation, a method which uses H (Hue) thresholds as the major thresholds to feature exact and recognize object in real time is presented.
文摘An optical inspection method of the Ball Grid Array package(BGA) was proposed by using a machine vision system. The developed machine vision system could get main critical factors for BGA quality evaluation, such as the height of solder ball, diameter, pitch and coplanarity. The experiment has proved that this system is available for BGA failure detection.
文摘This paper proposes the solution of tasks set required for autonomous robotic group behavior optimization during the mission on a distributed area in a cluttered hazardous terrain.The navigation scheme uses the benefits of the original real-time technical vision system(TVS)based on a dynamic triangulation principle.The method uses TVS output data with fuzzy logic rules processing for resolution stabilization.Based on previous researches,the dynamic communication network model is modified to implement the propagation of information with a feedback method for more stable data exchange inside the robotic group.According to the comparative analysis of approximation methods,in this paper authors are proposing to use two-steps post-processing path planning aiming to get a smooth and energy-saving trajectory.The article provides a wide range of studies and computational experiment results for different scenarios for evaluation of common cloud point influence on robotic motion planning.
基金This work was supported by the French research office(No.01 K 0742)under the Cléopatre project.
文摘This paper describes specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC-based hardware architecture is convenient in this field because of its versatility, flexibility, performance, and cost, current real-time operating systems are not completely adapted to long processing with varying duration, and it is often necessary to oversize the system to guarantee fail-safe functioning. Also, interactions with other robotic tasks having more priority are difficult to handle. To answer this problem, we have developed a dynamically reconfigurable vision processing system, based on the innovative features of Cleopatre real-time applicative layer concerning scheduling and fault tolerance. This framework allows to define emergency and optional tasks to ensure a minimal quality of service for the other subsystems of the robot, while allowing to adapt dynamically vision processing chain to an exceptional overlasting vision process or processor overload. Thus, it allows a better cohabitation of several subsystems in a single hardware, and to develop less expensive but safe systems, as they will be designed for the regular case and not rare exceptional ones. Finally, it brings a new way to think and develop vision systems, with pairs of complementary operators.
文摘Based on the characteristics of line structured light sensor, a speedy method for the calibration was established. With the coplanar reference target, the spacial pose between camera and optical plane can be calibrated by using of the camera’s projective center and the light’s information in the camera’s image surface. Without striction to the movement of the coplanar reference target and assistant adjustment equipment, this calibration method can be implemented. This method has been used and decreased the cost of calibration equipment, simplified the calibration procedure, improved calibration efficiency. Using experiment, the sensor can attain relative accuracy about 0.5%, which indicates the rationality and effectivity of this method.
基金the Project of National Natural Science Foundation of China(Grant No.61773059)the Project of National Defense Technology Foundation Program of China(Grant No.20230028) to provide fund for conducting experiments。
文摘In the visual positioning of Unmanned Ground Vehicle(UGV),the visual odometer based on direct sparse method(DSO) has the advantages of small amount of calculation,high real-time performance and high robustness,so it is more widely used than the visual odometer based on feature point method.Ordinary vision sensors have a narrower viewing angle than panoramic vision sensors,and there are fewer road signs in a single frame of image,resulting in poor road sign tracking and positioning capabilities,and severely restricting the development of visual odometry.Based on these considerations,this paper proposes a binocular stereo panoramic vision positioning algorithm based on extended DSO,which can solve these problems well.The experimental results show that the binocular stereo panoramic vision positioning algorithm based on the extended DSO can directly obtain the panoramic depth image around the UGV,which greatly improves the accuracy and robustness of the visual positioning compared with other ordinary visual odometers.It will have widely application prospects in the UGV field in the future.
文摘To improve the identification for visual defect of TFF-LCD, a new machine vision system is proposed, which is superior to human eye inspection. The system respectively employs a CCD camera to capture the image of TFT-LCD panel and an image processing system to identify potential visual defects. Image pre-processing, such as average filtering and geometric correction, was performed on the captured image, and then a candidate area of defect was segmented from the background. Feature information extracted from the area of interest entered a fuzzy rule-based classifier that simulated the defect inspection of TFT-LCD undertaken by experienced technicians. Experiment results show that the machine vision system can obtain fast, objective and accurate inspection compared with subjective and inaccurate human eye inspection.
文摘A design of low-light-level night vision system is described,which can image objects selectively in the specific space. The system can selectively image some objects in specific distances,meanwhile ignore those shelters on the way of observation by combining an intensifying charge coupled device(ICCD) with a near infrared laser assisted in vision,whose operation wavelength matches with the photocathode of the image tube,and adopting the gated mode and adjustable time-delay. A semiconductor laser diode of 100 W in peak power is chosen for illumination. The laser and the image tube operate in 150 ns pulse width and 2 kHz repeat frequency. Some images of different objects at the different distances within 100 m can be obtained clearly,and even behind a grove by using a sampling circuit and a delay control device at 100 W in peak power of semiconductor laser diode,150 ns in pulse width of laser and image tube,2 kHz in repeat frequency.
文摘This study assessed the feasibility of developing a machine vision system equipped with ultraviolet (UV) light, using changes in fish-surface color to predict aerobic plate count (APC, a standard freshness indicator) during storage. The APC values were tested and images of the fish surface were taken when fish were stored at room temperature. Then, images</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span><span><span><span> color-space conversion among RGB, HSV, and L*a*b* color spaces was carried out and analyzed. The results revealed that a* and b* values from the UV-light image decreased linearly during storage. A further regression analysis of these two parameters with APC value demonstrated a good exponential relationship between the a* value and the APC value (R</span><sup><span>2</span></sup><span> = 0.97), followed by the b* (R</span><sup><span>2</span></sup><span> = 0.85). Therefore, our results suggest that the change in color of the fish surface under UV light can be used to assess fish freshness during storage.
基金wsupported by the Thailand Research Fund and Solimac Automation Co.,Ltd.under the Research and Researchers for Industry Program(RRI)under Grant No.MSD56I0098Office of the Higher Education Commission under the National Research University Project of Thailand
文摘In this paper,we present a robot vision based system for coordinate measurement of feature points on large scale automobile parts.Our system consists of an industrial 6-DOF robot mounted with a CCD camera and a PC.The system controls the robot into the area of feature points.The images of measuring feature points are acquired by the camera mounted on the robot.3D positions of the feature points are obtained from a model based pose estimation that applies to the images.The measured positions of all feature points are then transformed to the reference coordinate of feature points whose positions are obtained from the coordinate measuring machine(CMM).Finally,the point-to-point distances between the measured feature points and the reference feature points are calculated and reported.The results show that the root mean square error(RMSE) of measure values obtained by our system is less than 0.5 mm.Our system is adequate for automobile assembly and can perform faster than conventional methods.
基金support of the National Natural Science Foundation of China(No.52175504 and 51927811)the Fundamental Research Funds for the Central Universities of China(No.PA2022GDSK0074)the National Key Research and Development Program of China(No.2022CSJGG1303)
文摘Rotational Vision System(RVS)is a common active vision system with only rotational degrees of freedom.Usually,the degree of freedom for rotation is provided by the turntable and pan head.Or the hand to eye(EIH)structure in articulated arm robots.Due to assembly deviations and manufacturing accuracy limitations,the ideal assumption that the rotation axis is fully aligned with the coordinate axis of the local camera is mostly violated.To address this issue,we propose a generalized deviation model that specifies a rotation axis that connects the rotational motion of the platform with the external orientation(EO)of the camera.On this basis,we propose a heuristic estimation algorithm to minimize global reprojection errors and fit circles in space under constraints of global optimization.The experiment shows that the translation and tilt average reprojection errors of dynamic EO reconstruction based on the reprojection error method are 0.14 and 0.08 pixels,respectively.In the absence of angle measurement,the results of the circle fitting method are similar to them(with a relative error of about 2%),meeting the application requirements of general visual measurement.
文摘Background: The small nematode Caenorhabditis elegans (C.elegans) is an excellent model organism for studying the molecular and cellular basis of nervous system function. Since
文摘This paper discusses the coordination process for a robot gripper to approach a movingobject with feedback from an uncalibrated visual system. The dynamic of the whole system, includingtarget's random motion and the gripper's tracking motion, is bounded to a 2-D working plane. Acamera, whose relations with the robot system and the 2-D working plane are unknown to the robotcontroller, is fixed aside to observe the object and gripper positions continually. Thus the movementsof the robot gripper can be decided on the positions of the object observed in each visual samplingmoment. The coordination of the vision and robot system is to be shown independently from therelations between the robot and the vision system, which should always be calibrated a prior forthe control of traditional robot/vision coordination system. Simulations are provided to show theproperty of the proposed method.
基金the Development Fund for Primary Projects of China's Ministry of Education (No. 708035)
文摘Autonomous functions including mapping and path planning are very important to ensure effcient exploration and safe navigation of unmanned rover. Conventional navigation schemes based on equipments such as GPS and magnetic sensors have been proven to be ineffective on lunar surface,while sophisticated dead reckoning approach lacks accuracy in loose soil due to slippage. In this paper,we propose a hybrid vision system(HVS) which consists of one stereo and one omnidirectional vision sensor,attempting to integrate the advantages of diverse vision systems. The hierarchical mapping reconstructs environment through HVS in different resolutions and structures,named qualitative,rough and detailed map. These maps are employed for path planning which navigates the rover towards specified destinations autonomously,avoiding obstacles in its way. The HVS aims at providing more effcient and safe navigation. Simulations and experiments demonstrate the functionality and advantage of our approach.
文摘Cold Workability limits of Brass were studied as a function of friction, aspect ratio and specimen geometry. Five standard shapes of the axis symmetric specimens of cylindrical with aspect ratios 1.0 and 1.5, ring, tapered and flanged were selected for the present investigation. Specimens were deformed in compression between two flat platens to predict the metal flow at room temperature. The longitudinal and oblique cracks were obtained as the two major modes of surface fractures. Cylindrical and ring specimen shows the oblique surface crack while the tapered and flanged shows the longitudinal crack. Machine Vision system using PC based video recording with a CCD camera was used to analyze the deformation of 4 X 4 mm square grid marked at mid plane of the specimen. The strain paths obtained from different specimens exhibited nonlinearity from the beginning to the end of the strain path. The circumferential stress component Os increasingly becomes tensile with continued deformation. On the other hand the axial stress Oz , increased in the very initial stages of deformation but started becoming less compressive immediately as barreling develops. The nature of hydrostatic stress on the rim of the flanged specimen was found to be tensile. Finite element software ANSYS has been applied for the analysis of the upset forming process. When the stress values obtained from finite element analysis were compared to the measurements of grids using Machine Vision system it was found that they were in close proximity.