期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
VISCOSITY APPROXIMATION METHODS FOR THE SPLIT EQUALITY COMMON FIXED POINT PROBLEM OF QUASI-NONEXPANSIVE OPERATORS 被引量:1
1
作者 赵静 王盛楠 《Acta Mathematica Scientia》 SCIE CSCD 2016年第5期1474-1486,共13页
Let H;, H;, H;be real Hilbert spaces, let A : H;→ H;, B : H;→ H;be two bounded linear operators. The split equality common fixed point problem(SECFP) in the infinite-dimensional Hilbert spaces introduced by Moudaf... Let H;, H;, H;be real Hilbert spaces, let A : H;→ H;, B : H;→ H;be two bounded linear operators. The split equality common fixed point problem(SECFP) in the infinite-dimensional Hilbert spaces introduced by Moudafi(Alternating CQ-algorithm for convex feasibility and split fixed-point problems. Journal of Nonlinear and Convex Analysis)is to find x ∈ F(U), y ∈ F(T) such that Ax = By,(1)where U : H;→ H;and T : H;→ H;are two nonlinear operators with nonempty fixed point sets F(U) = {x ∈ H;: Ux = x} and F(T) = {x ∈ H;: Tx = x}. Note that,by taking B = I and H;= H;in(1), we recover the split fixed point problem originally introduced in Censor and Segal. Recently, Moudafi introduced alternating CQ-algorithms and simultaneous iterative algorithms with weak convergence for the SECFP(1) of firmly quasi-nonexpansive operators. In this paper, we introduce two viscosity iterative algorithms for the SECFP(1) governed by the general class of quasi-nonexpansive operators. We prove the strong convergence of algorithms. Our results improve and extend previously discussed related problems and algorithms. 展开更多
关键词 split equality common fixed point problems quasi-nonexpansive operator strong convergence viscosity iterative algorithms Hilbert space
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部