Varicella-zoster is a highly communicable virus that can be transmitted through the airborne route.About one quarter of people are infected with this virus.Previous studies have described the structure of A-capsid and...Varicella-zoster is a highly communicable virus that can be transmitted through the airborne route.About one quarter of people are infected with this virus.Previous studies have described the structure of A-capsid and a blurred reconstruction of the C-capsid with icosahedral symmetry.In this study,we have determined the more precise detailed structures of the varicella-zoster virus(VZV)B-and C-capsid in icosahedral symmetry using a combination of block-based reconstruction and symmetry relaxation strategies.In addition,we are reporting structural details of the portal vertex reconstructions in five-fold symmetry and portal reconstructions in twelve-fold symmetry.The structures unveil the basis for the high thermal stability of the VZV capsid.The conformational flexibility of structural elements of the capsid plays a role in the assembly of the capsid and drives processes critical for the viral life cycle.The results of the study open up new avenues for the development of drugs against a highly prevalent and contagious pathogen.展开更多
AIM: To determine if calnexin(CANX), RAB1 and alphatubulin were involved in the production of hepatitis C virus(HCV) particles by baby hamster kidney-West Nile virus(BHK-WNV) cells. METHODS: Using a si RNA-based appro...AIM: To determine if calnexin(CANX), RAB1 and alphatubulin were involved in the production of hepatitis C virus(HCV) particles by baby hamster kidney-West Nile virus(BHK-WNV) cells. METHODS: Using a si RNA-based approach complemented with immuno-fluorescence confocal microscope and Western blot studies, we examined the roles of CANX, RAB1 and alpha-tubulin in the production of HCV particles by permissive BHK-WNV cells expressing HCV structural proteins or the full-length genome of HCV genotype 1a. Immuno-fluorescence studies in producer cells were performed with monoclonal antibodies against HCV structural proteins, as well as immunoglobulin from the serum of a patient recently cured from an HCV infection of same genotype. The cellular compartment stained by the serum immunoglobulin was also observedin thin section transmission electron microscopy. These findings were compared with the JFH-1 strain/Huh-7.5 cell model.RESULTS: We found that CANX was necessary for the production of HCV particles by BHK-WNV cells. This process involved the recruitment of a subset of HCV proteins, detected by immunoglobulin of an HCV-cured patient, in a compartment of rearranged membranes bypassing the endoplasmic reticulum-Golgi intermediary compartment and surrounded by mitochondria. It also involved the maturation of N-linked glycans on HCV envelope proteins, which was required for assembly and/or secretion of HCV particles. The formation of this specialized compartment required RAB1; upon expression of HCV structural genes, this compartment developed large vesicles with viral particles. RAB1 and alpha-tubulin were required for the release of HCV particles. These cellular factors were also involved in the production of HCVcc in the JFH-1 strain/Huh-7.5 cell system, which involves HCV RNA replication. The secretion of HCV particles by BHK-WNV cells presents similarities with a pathway involving caspase-1; a caspase-1 inhibitor was found to suppress the production of HCV particles from a full-length genome.CONCLUSION: Prior activity of the WNV subgenomic replicon in BHK-21 cells promoted re-wiring of host factors for the assembly and release of infectious HCV in a caspase-1-dependent mechanism.展开更多
AIM: We have previously demonstrated that hepatitis C virus (HCV) core protein is efficiently released into the culture medium in insect cells. The objective of this study is to characterize the HCV core secretion in ...AIM: We have previously demonstrated that hepatitis C virus (HCV) core protein is efficiently released into the culture medium in insect cells. The objective of this study is to characterize the HCV core secretion in insect cells. METHODS: We constructed recombinant baculoviruses expressing various-length of mutant core proteins, expressed these proteins in insect cells, and examined core protein secretion in insect cells. RESULTS: Only wild type core was efficiently released into the culture medium, although the protein expression level of wild type core was lower than those of other mutant core proteins. We found that the shorter form of the core construct expressed the higher level of protein. However, if more than 18 amino acids of the core were truncated at the C-terminus, core proteins were no longer secreted into the culture medium. Membrane flotation data show that the secreted core proteins are associated with the cellular membrane protein, indicating that HCV core is secreted as a membrane complex. CONCLUSION: The C-terminal 18 amino acids of HCV core were crucial for core secretion into the culture media. Since HCV replication occurs on lipid raft membrane structure, these results suggest that HCV may utilize a unique core release mechanism to escape immune surveillance, thereby potentially representing the feature of HCV morphogenesis.展开更多
The first appearance of lipid rafts, or lipid rafts-like structure, was occasionally observed by cryo-electronic microscopy in 1980s as cavity, such as caveolae. However, the fully understanding of lipid raft was attr...The first appearance of lipid rafts, or lipid rafts-like structure, was occasionally observed by cryo-electronic microscopy in 1980s as cavity, such as caveolae. However, the fully understanding of lipid raft was attributed by the studies of T cell activation, virus entry/budding, and other membrane events. During the interaction of T cell and antigen presenting cell, a highly organized structure is formed at the interface of the two cells, where cholesterol and sphingolipids are enriched, and form a liquid ordered phase that facilitates the signaling proteins on and off. Lipid rafts are also involved in virus entry and assembly. In this review, we will discuss cholesterolsphingolipid floating microdomain, the lipid raft as a unique compartment of the plasma membrane, with biological functions that ensure correct intracellular traffic of proteins and lipids, such as protein-protein interactions by concentrating certain proteins in these microdomains, while excluding others. We also discuss the disruption of lipid rafts is related to different diseases and aging, and we especially exploit the lipid rafts as pharmaceutical targets for anti-virus and anti-inflammation, particularly a new approach to control HIV infection for AIDS prevention and protection by inhibition or disruption of lipid rafts. Cellular & Molecular Immunology.展开更多
基金supported by the Strategic Priority Research Program (XDB29010000)National Key Research and Development Program (2018YFA0900801)+5 种基金National Science Foundation Grants 32200135 and 12034006supported by National Science Fund for Distinguished Young Scholar (No.32325004)the NSFS Innovative Research Group (No.81921005)supported by the Young Elite Scientists Sponsorship Program by CAST (2022QNRC001)the Youth Innovation Promotion Association of CAS grantsupported by the Special Research Assistant Project of the Chinese Academy of Sciences.
文摘Varicella-zoster is a highly communicable virus that can be transmitted through the airborne route.About one quarter of people are infected with this virus.Previous studies have described the structure of A-capsid and a blurred reconstruction of the C-capsid with icosahedral symmetry.In this study,we have determined the more precise detailed structures of the varicella-zoster virus(VZV)B-and C-capsid in icosahedral symmetry using a combination of block-based reconstruction and symmetry relaxation strategies.In addition,we are reporting structural details of the portal vertex reconstructions in five-fold symmetry and portal reconstructions in twelve-fold symmetry.The structures unveil the basis for the high thermal stability of the VZV capsid.The conformational flexibility of structural elements of the capsid plays a role in the assembly of the capsid and drives processes critical for the viral life cycle.The results of the study open up new avenues for the development of drugs against a highly prevalent and contagious pathogen.
基金Supported by Intramural Program of the National Institutes of Health,National Institute of Allergy and Infectious Diseases(Project No.1 ZIA AI000733-15:Enveloped Virus Glycoprotein/Receptor Interactions)to Edward A Berger,PhD(MSS,LVD,DIR,NIAID)ORISE Senior Fellow award(Award No.1238-1238-03:Department of Energy/Oak Ridge Institute for Science and Education)to Bertrand Saunier,MD,PhD
文摘AIM: To determine if calnexin(CANX), RAB1 and alphatubulin were involved in the production of hepatitis C virus(HCV) particles by baby hamster kidney-West Nile virus(BHK-WNV) cells. METHODS: Using a si RNA-based approach complemented with immuno-fluorescence confocal microscope and Western blot studies, we examined the roles of CANX, RAB1 and alpha-tubulin in the production of HCV particles by permissive BHK-WNV cells expressing HCV structural proteins or the full-length genome of HCV genotype 1a. Immuno-fluorescence studies in producer cells were performed with monoclonal antibodies against HCV structural proteins, as well as immunoglobulin from the serum of a patient recently cured from an HCV infection of same genotype. The cellular compartment stained by the serum immunoglobulin was also observedin thin section transmission electron microscopy. These findings were compared with the JFH-1 strain/Huh-7.5 cell model.RESULTS: We found that CANX was necessary for the production of HCV particles by BHK-WNV cells. This process involved the recruitment of a subset of HCV proteins, detected by immunoglobulin of an HCV-cured patient, in a compartment of rearranged membranes bypassing the endoplasmic reticulum-Golgi intermediary compartment and surrounded by mitochondria. It also involved the maturation of N-linked glycans on HCV envelope proteins, which was required for assembly and/or secretion of HCV particles. The formation of this specialized compartment required RAB1; upon expression of HCV structural genes, this compartment developed large vesicles with viral particles. RAB1 and alpha-tubulin were required for the release of HCV particles. These cellular factors were also involved in the production of HCVcc in the JFH-1 strain/Huh-7.5 cell system, which involves HCV RNA replication. The secretion of HCV particles by BHK-WNV cells presents similarities with a pathway involving caspase-1; a caspase-1 inhibitor was found to suppress the production of HCV particles from a full-length genome.CONCLUSION: Prior activity of the WNV subgenomic replicon in BHK-21 cells promoted re-wiring of host factors for the assembly and release of infectious HCV in a caspase-1-dependent mechanism.
基金Supported by a grant from the Korean Ministry of Science and Technology (Korean Systems Biology Research Grant, M1-0309-06-0002) partly by the research grant from Hallym University, Korea Co-first-authors: Kyu-Jin Park
文摘AIM: We have previously demonstrated that hepatitis C virus (HCV) core protein is efficiently released into the culture medium in insect cells. The objective of this study is to characterize the HCV core secretion in insect cells. METHODS: We constructed recombinant baculoviruses expressing various-length of mutant core proteins, expressed these proteins in insect cells, and examined core protein secretion in insect cells. RESULTS: Only wild type core was efficiently released into the culture medium, although the protein expression level of wild type core was lower than those of other mutant core proteins. We found that the shorter form of the core construct expressed the higher level of protein. However, if more than 18 amino acids of the core were truncated at the C-terminus, core proteins were no longer secreted into the culture medium. Membrane flotation data show that the secreted core proteins are associated with the cellular membrane protein, indicating that HCV core is secreted as a membrane complex. CONCLUSION: The C-terminal 18 amino acids of HCV core were crucial for core secretion into the culture media. Since HCV replication occurs on lipid raft membrane structure, these results suggest that HCV may utilize a unique core release mechanism to escape immune surveillance, thereby potentially representing the feature of HCV morphogenesis.
文摘The first appearance of lipid rafts, or lipid rafts-like structure, was occasionally observed by cryo-electronic microscopy in 1980s as cavity, such as caveolae. However, the fully understanding of lipid raft was attributed by the studies of T cell activation, virus entry/budding, and other membrane events. During the interaction of T cell and antigen presenting cell, a highly organized structure is formed at the interface of the two cells, where cholesterol and sphingolipids are enriched, and form a liquid ordered phase that facilitates the signaling proteins on and off. Lipid rafts are also involved in virus entry and assembly. In this review, we will discuss cholesterolsphingolipid floating microdomain, the lipid raft as a unique compartment of the plasma membrane, with biological functions that ensure correct intracellular traffic of proteins and lipids, such as protein-protein interactions by concentrating certain proteins in these microdomains, while excluding others. We also discuss the disruption of lipid rafts is related to different diseases and aging, and we especially exploit the lipid rafts as pharmaceutical targets for anti-virus and anti-inflammation, particularly a new approach to control HIV infection for AIDS prevention and protection by inhibition or disruption of lipid rafts. Cellular & Molecular Immunology.