The early involvement of test and evaluation can significantly reduce the cost of modifying issues and errors found in the later stages of aircraft development and design process.This paper presents a methodology for ...The early involvement of test and evaluation can significantly reduce the cost of modifying issues and errors found in the later stages of aircraft development and design process.This paper presents a methodology for aircraft mission effectiveness evaluation and design space exploration based on Virtual Operational Test(VOT),incorporating Virtual Open Scenario(VOS)and User in Scenarios(UIS)concepts.By employing modeling and simulation technologies in the early stages of aircraft development and design,a virtual environment can be constructed,allowing aircraft users to participate more closely and conveniently in the design process.Virtual tests conducted by users within the mission context provide data on mission effectiveness and critical user feedback.This paper outlines the main components of the virtual operational test process and related conceptual methods,and discusses an open support system framework that supports VOT.The effectiveness and adaptability of the method are demonstrated through two case studies:a beyond-visual-range air combat scenario and a helicopter ground attack scenario.These case studies demonstrate the evaluation of aircraft mission effectiveness and the sensitivity analysis and optimization of design and operational parameters based on VOT.展开更多
This study aims to construct a virtual twin testing framework for the safety of the intended functionality of intelligent connected vehicles to address the safety requirements of intelligent driving and transportation...This study aims to construct a virtual twin testing framework for the safety of the intended functionality of intelligent connected vehicles to address the safety requirements of intelligent driving and transportation systems.The research methods include the construction of a theoretical model of safety for intelligent connected vehicles based on the concept of virtual twins,the correlation study between key concepts and functional safety,and the application research of virtual twin technology in the safety testing of intelligent connected vehicles.The results reveal that the virtual twin testing framework can effectively enhance the functional safety of intelligent connected vehicles,reduce development costs,and shorten the product launch cycle.The conclusion suggests that this framework provides strong support for the healthy development of the intelligent connected vehicle industry and has a positive impact on the safety and efficiency of intelligent transportation systems.展开更多
Technological trends in the automotive industry toward a software-defined and autonomous vehicle require a reassessment of today’s vehicle development process.The validation process soaringly shapes after starting wi...Technological trends in the automotive industry toward a software-defined and autonomous vehicle require a reassessment of today’s vehicle development process.The validation process soaringly shapes after starting with hardware-in-the-loop testing of control units and reproducing real-world maneuvers and physical interaction chains.Here,the road-to-rig approach offers a vast potential to reduce validation time and costs significantly.The present research study investigates the maneuver reproduction of drivability phenomena at a powertrain test bed.Although drivability phenomena occur in the frequency range of most up to 30∙Hz,the design and characteristics substantially impact the test setup’s validity.By utilization of modal analysis,the influence of the test bed on the mechanical characteristic is shown.Furthermore,the sensitivity of the natural modes of each component,from either specimen or test bed site,is determined.In contrast,the uncertainty of the deployed measurement equipment also affects the validity.Instead of an accuracy class indication,we apply the ISO/IEC Guide 98 to the measurement equipment and the test bed setup to increase the fidelity of the validation task.In conclusion,the present paper contributes to a traceable validity determination of the road-to-rig approach by providing objective metrics and methods.展开更多
The interpretation of the cone penetration test(CPT)still relies largely on empirical correlations that have been predominantly developed in resource-intensive and time-consuming calibration chambers.This paper presen...The interpretation of the cone penetration test(CPT)still relies largely on empirical correlations that have been predominantly developed in resource-intensive and time-consuming calibration chambers.This paper presents a CPT virtual calibration chamber using deep learning(DL)approaches,which allow for the consideration of depth-dependent cone resistance profiles through the implementation of two proposed strategies:(1)depth-resistance mapping using a multilayer perceptron(MLP)and(2)sequence-to-sequence training using a long short-term memory(LSTM)neural network.Two DL models are developed to predict cone resistance profiles(qc)under various soil states and testing conditions,where Bayesian optimization(BO)is adopted to identify the optimal hyperparameters.Subsequently,the BO-MLP and BO-LSTM networks are trained using the available data from published datasets.The results show that the models with BO can effectively improve the prediction accuracy and efficiency of neural networks compared to those without BO.The two training strategies yielded comparable results in the testing set,and both can be used to reproduce the whole cone resistance profile.An extended comparison and validation of the prediction results are carried out against numerical results obtained from a coupled Eulerian-Lagrangian(CEL)model,demonstrating a high degree of agreement between the DL and CEL models.Ultimately,to demonstrate the usability of this new virtual calibration chamber,the predicted qc is used to enhance the preceding correlations with the relative density(Dr)of the sand.The improved correlation with superior generalization has an R^(2) of 82%when considering all data,and 89.6%when examining the pure experimental data.展开更多
This paper introduces a kind of substitute bench testing method for vehicle application development and testing method of the test requirements,including battery fast conversion cycle test equipment,enter type incubat...This paper introduces a kind of substitute bench testing method for vehicle application development and testing method of the test requirements,including battery fast conversion cycle test equipment,enter type incubator,liquid-cooled machine and ancillary equipment composed of a set of test system,through the walk-in constant temperature box to simulate the new energy vehicles under different environmental conditions of the test requirements,Liquid-cooled machine and auxiliary parts to complete the battery thermal management system need cooling fluid conditions,the battery conversion cycle test equipment to simulate the dc fast charging way of filling pile,complete battery thermal management system test,shorten the filling fast charging time and improve battery fast charge security,for troubleshooting and data collection and analysis,Improve work efficiency,save costs,and eliminate customer anxiety about battery life and charging time.展开更多
In order to investigate the permanent deformation behavior of asphalt mixtures from discontinuity, the virtual rutting test of asphalt mixtures is developed by the discrete element method (DEM). A digital specimen g...In order to investigate the permanent deformation behavior of asphalt mixtures from discontinuity, the virtual rutting test of asphalt mixtures is developed by the discrete element method (DEM). A digital specimen generation procedure considering aggregate gradation and irregular shape is developed based on the probability theory and the Monte Carlo method. The virtual rutting test is then conducted based on the generated digital specimen. In addition, on the basis of the time-temperature superposition (TTS) principle, a calculation method is used to reduce the computation time of the virtual rutting test. The simulation results are compared with the laboratory measurements. The results show that the calculation method based on the TFS principle in the discrete element (DE) viscoelastic model can significantly reduce the computation time. The deformation law of asphalt mixtures in the virtual rutting test is similar to the laboratory measurements, and the deformation and the dynamic stability of the virtual rutting test are slightly greater than the laboratory measurements. The two-dimensional virtual rutting test can predict the permanent deformation performance of asphalt mixtures.展开更多
This paper describes the model test and the virtual simulation respectively for the VLCC class FPSO hookup, as well as addresses their different applications to the mating operation between the FPSO and the soft yoke ...This paper describes the model test and the virtual simulation respectively for the VLCC class FPSO hookup, as well as addresses their different applications to the mating operation between the FPSO and the soft yoke mooring system (SYMS) in extremely shallow water. The scope of the model test and the virtual simulation covers various installation stages including a series of positioning trials, positioning keeping and temporary mooring to the pre-installed SYMS mooring tower, pendulum mating, and yoke ballasting to storm-safe. The model test is to accurately verify bollard pull capacity to keep the FPSO in position and assess motion responses and mooring loads for the FPSO and installation vessels during various installation stages. The virtual simulation is to provide a virtual-reality environment, thus realistically replicating the hookup operation at the Simulation Test Center (STC) facility and identifying any deficiencies in key installation personnel, execution plan, or operation procedures. The methodologies of the model test and the virtual simulation addressed here can be easily extended to the deepwater applications such as positioning and installation operations of various floating systems.展开更多
Testability virtual test is a new test method for testability verification, which has the advantages such as low cost, few restrictions and large sample of test data. It can be used to make up the deficiency of testab...Testability virtual test is a new test method for testability verification, which has the advantages such as low cost, few restrictions and large sample of test data. It can be used to make up the deficiency of testability physical test. In order to take the advantage of testability virtual test data effectively and to improve the accuracy of testability evaluation, a testability integrated eval- uation method is proposed in this paper based on testability virtual test data. Considering the char- acteristic of testability virtual test data, the credibility analysis method for testability virtual test data is studied firstly. Then the integrated calculation method is proposed fusing the testability vir- tual and physical test data. Finally, certain helicopter heading and attitude system is presented to demonstrate the proposed method. The results show that the testability integrated evaluation method is feasible and effective.展开更多
Framework and basic parameters of a test bench for motor drive system of electric vehicle (EV) are illuminated. Two kinds of electric drive models, one was for the electric vehicle drived on real road, the other was f...Framework and basic parameters of a test bench for motor drive system of electric vehicle (EV) are illuminated. Two kinds of electric drive models, one was for the electric vehicle drived on real road, the other was for that on test bench, are put forward. Then, dynamic analysis of these models is made in detail. Inertia matching method of the test bench is researched and some useful formulas and graphs are brought forward. The experiment of an electric bus is introduced in order to explain the usage of this inertia matching method.展开更多
Circulation Control(CC) realizes rudderless flight control by driving compressed air jet to generate a virtual rudder surface, which significantly improves low detectability. The layout plan of combined control rudder...Circulation Control(CC) realizes rudderless flight control by driving compressed air jet to generate a virtual rudder surface, which significantly improves low detectability. The layout plan of combined control rudder surface is proposed based on the tailless flying wing aircraft. The closed-loop jet actuator system and stepless rudder surface switching control strategy are used to quantitatively study the control characteristics of circulation actuator for pitch and roll attitude through 3-DOF virtual flight test in a wind tunnel with a powered model at wind speed of 40 m/s. The results show that the combined use of circulation actuators can achieve bidirectional continuous and stable control of the aircraft’s pitch and roll attitude, with the maximum pitch rate of 12.3(°)/s and the maximum roll rate of 21.5(°)/s;the response time of attitude angular rate varying with the jet pressure ratio is less than 0.02 s, which can satisfy the control response requirements of aircraft motion stability for the control system;the jet rudder surface has a strong moment control ability, and the pitch moment of the jet elevator with a pressure ratio of 1.28 is the same as that of the mechanical elevator with 28° rudder deflection, which can expand the flight control boundary.展开更多
This paper presents the design and implementation of reconfigurable virtual environments (VEs) for virtual testing. It proposes a hybrid design approach that is derived from a so-called integration and composition of ...This paper presents the design and implementation of reconfigurable virtual environments (VEs) for virtual testing. It proposes a hybrid design approach that is derived from a so-called integration and composition of the reconfiguration strategy. The designing process has thus evolved from binding virtual objects using reconfiguration rules within the context of virtual testing scenarios. Therefore reconfigurable virtual environments are established with improved flexibility and scalability, tailored to a wide range of virtual testing applications. Those virtual environments integrate virtual testing scenarios, data acquisition, databases, rule mapping and application interfaces, which yield modular testing functions and an open-ended system architecture with a set of extensible interface tools to realize data exchange within reconfigurable VEs. This enables virtual testing scenarios to be reconfigured interactively based on real time data and communication between virtual environments and real environments. A virtual testing application has been implemented using reconfigurable VEs. Keywords Virtual environment - virtual testing - reconfigurable virtual reality Wenyan Wu graduated from Dalian University of Technology, China, with BSc and MSc in 1988 and 1991 respectively. She earned her PhD degree from University of Derby, UK, in 2002. She had taught and researched in Harbin Institute of Technology, China and De Montfort University, UK. She is currently a senior lecturer in simulation and virtual reality at Staffordshire University, UK. Her research interests include computer graphics, Virtual Reality and Augmented Reality system, advanced interface, modelling and simulation, distribution system.Zhengxu Zhao BSc, MSc, PhD, CEng, CITP, MBCS, full Professor in Applied Computing, Director of Virtual Reality Centre. He is also a Cheng Kong Scholar Project Professor in Virtual Reality Technology and Director of Virtual Reality Research Centre at the Southeast University, P R China. Professor Zhao’s research interests include computing graphics and VR systems, industrial process simulation, CIM and manufacturing management systems.展开更多
The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete elem...The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.展开更多
Objective To describe changes that occur in stent morphology and structure after its implantation in coronary bifurcation.Side branch (SB) compromise after stenting of main vessel in coronary bifurcation is a major in...Objective To describe changes that occur in stent morphology and structure after its implantation in coronary bifurcation.Side branch (SB) compromise after stenting of main vessel in coronary bifurcation is a major intraprocedural problem and for the long term,as a place of restenosis.Methods We created an elastic wall model (parent vessel diameter 3.5mm,daughter branches 3.5mm and 2.75mm)with 30,45 and 60 degree distal angulation between branches.After stent implantation,struts to the side branch were opened with 2.0mm and consequently 3.0mm diameter balloons.Subsequent balloon redilatations and kissing balloon inflations (KBI) were performed.All stages of the procedure were photographed with magnification up to 100 times.Results We found that the leading mechanism for side branch compromise was carina displacement,and discovered theoretical description for expected ostial stenosis severity.Based on our model we found that displacement of bifurcation flow divider cause SB stenosis with almost perfect coincidence with our theoretical predictions.Opening of stent cells through the proximal and distal stent struts always increased interslrut distance,but never achieved good apposition to the wall.Balloon diameter increase didn't give proportional enlargement in stent cell diameters.KBI leads to some small better stent positioning,correcting main vessel strut dislodgment from wall,but never gave full strut-wall contact.Distance between struts and wall was minimal only when the stent cell perfectly faced ostium of SB.This was also our observation that the shape of ostium of SB becomed eUiptically-bean shaped after stent implantation and generally kept that shape during consequent stages of experiment.Measured diameter and area stenosis were perfectly fitted and theoretically predicted from our concept Conclusion We have described stent-wall deformations in stent-balloon technique for treatment of coronary bifurcation demonstrating carina displacement as possibly main mechanism of side branch compromise after main vessel stenting.We have shown that KBI could not give full strut-wall contact if there is no perfect facing of stem cell and SB ostium.(J Geroatr Cardool 2008;5(1):43-49)展开更多
As one of the promising configurations of the next generation of commercial aircraft,research on departure characteristics of the Blended-Wing-Body(BWB)is of great signification to safe flight limits.A three-degree-of...As one of the promising configurations of the next generation of commercial aircraft,research on departure characteristics of the Blended-Wing-Body(BWB)is of great signification to safe flight limits.A three-degree-of-freedom(3-DOF)virtual flight test in a wind tunnel has been implemented for a candidate configuration to predict the departure characteristics.The support mechanism,the test model and the control law of the virtual flight test are introduced.In order to show the relationship between virtual flight test and actual flight test,the similarity criterion is also given.In open loop,the model has mild oscillations in the longitudinal and lateral directions,which are stable in closed-loop.The effect of flight control has been verified in virtual flight and actual subscale flight test.The analysis of system identification results indicate that the model has a good response to the excitation signal,and the response is in reasonable agreement with the flight test.Finally,the virtual flight departure test results are compared with the flight test.It shows that there is a good correspondence between the angle of attack and the elevator deflection at departure.This gives promising evidence of the practicability of virtual flight testing to predict departure of a BWB.展开更多
The authors have created a virtual test of vibration particle-screening using Autodesk's 3ds Max software,the MAXScript scripting language and the AGEIA PhysX physics processing unit(PPU).The affect of various par...The authors have created a virtual test of vibration particle-screening using Autodesk's 3ds Max software,the MAXScript scripting language and the AGEIA PhysX physics processing unit(PPU).The affect of various parameters on screening efficiency were modeled.The parameters included vibration amplitude,frequency and direction.The length and inclination of the vibrating surface were also varied.The virtual experiment is in basic agreement with results predicted from screening theory.This shows that the virtual screener can be used for preliminary investigations and the results used to evaluate screen design.In addition it can help with theoretical research.展开更多
A unit pump test bench is developed on an in-line pump test platform. The bench is composed of pump adapting assembly, fuel supply subsystem, lubricating subsystem and a control unit. A crank angle domain injection co...A unit pump test bench is developed on an in-line pump test platform. The bench is composed of pump adapting assembly, fuel supply subsystem, lubricating subsystem and a control unit. A crank angle domain injection control method is given out and the control accuracy can be 0.1° crank degree. The bench can test both mechanical unit pump and electronic unit pump. A test model-PLD12 electronic unit pump is tested. Full pump delivery map and some influence factors test is done. Experimental results show that the injection quantity is linear with the delivery angle. The quantity change rate is 15% when fuel temperature increases 30 ℃. The delivery quantity per cycle increases 30 mg at 28 V drive voltage. The average delivery difference for two same type pumps is 5 %. Test results show that the bench can be used for unit pump verification.展开更多
Virtual testability demonstration test has many advantages,such as low cost,high efficiency,low risk and few restrictions.It brings new requirements to the fault sample generation.A fault sample simulation approach fo...Virtual testability demonstration test has many advantages,such as low cost,high efficiency,low risk and few restrictions.It brings new requirements to the fault sample generation.A fault sample simulation approach for virtual testability demonstration test based on stochastic process theory is proposed.First,the similarities and differences of fault sample generation between physical testability demonstration test and virtual testability demonstration test are discussed.Second,it is pointed out that the fault occurrence process subject to perfect repair is renewal process.Third,the interarrival time distribution function of the next fault event is given.Steps and flowcharts of fault sample generation are introduced.The number of faults and their occurrence time are obtained by statistical simulation.Finally,experiments are carried out on a stable tracking platform.Because a variety of types of life distributions and maintenance modes are considered and some assumptions are removed,the sample size and structure of fault sample simulation results are more similar to the actual results and more reasonable.The proposed method can effectively guide the fault injection in virtual testability demonstration test.展开更多
A smart fully mechanized coal mining working face is comprised of various heterogeneous equipment that work together in unknown coal seam environments.The goal is to form a smart operational system with comprehensive ...A smart fully mechanized coal mining working face is comprised of various heterogeneous equipment that work together in unknown coal seam environments.The goal is to form a smart operational system with comprehensive perception,decisionmaking,and control.This involves many work points and complex coupling relationships,indicating it needs to be performed in stages and coordinated to address key problems in all directions and along multiple points.However,there are no existing unifed test or analysis tools.Therefore,this study proposed a virtual test and evaluation method for a fully mechanized mining production system with diferent smart levels.This is based on the concept of“real data processing–virtual scene construction–setting key information points–virtual operation and evaluation.”The actual operational data for a specifc working face geology and equipment were reasonably transformed into a visual virtual scene through a movement relationship model.The virtual operations and mining conditions of the working face were accurately reproduced.Based on the sensor and execution error analyses for diferent smart levels,the input interface for sensing,decision-making,and control was established for each piece of equipment,and an operation evaluation system was constructed.The system comprehensively simulates and tests the key points of sensing decision-making and control with various smart levels.The experimental results showed that the virtual scene constructed based on actual operational data has a high simulation degree.Users can simulate,analyze,and evaluate the overall operations of the smart mining 2.0–4.0 working face by inputting key information.The future direction for the smart development of fully mechanized mining is highlighted.展开更多
In order to obtain the primary parameters and operating characteristics of a DC motor without directly measuring its torque and rational speed, it is proposed to use a PC and a data acquisition card to acquire both th...In order to obtain the primary parameters and operating characteristics of a DC motor without directly measuring its torque and rational speed, it is proposed to use a PC and a data acquisition card to acquire both the dynamic and static data of armature current to establish the performance of a DC permanent magnet motor. The accuracy and validity of this virtual test system proposed were verified by comparing the measurements made with the system proposed with the measurements made with conventional torque meters. It is concluded from the results of comparison that from the mathematic model established for the DC permant magnet motors, both major parameters and operating characteristics can be directly established for the DC motors without measuring their torques and rotational speed, a perfect on line measurement and test system has been established for the DC permanent magnet motors using the theory of virtual test system. The system proposed features shorter test time, higher efficiency and lower cost.展开更多
Background: The Box and Block clinical test is a validated and standardized scale for use in the clinical environment that allows the assessment of rough manipulative dexterity. Proposing virtual methods to carry out ...Background: The Box and Block clinical test is a validated and standardized scale for use in the clinical environment that allows the assessment of rough manipulative dexterity. Proposing virtual methods to carry out these assessments is an attempt to eliminate some of the subjectivity that the test may entail depending on the observer and the way in which the patient gives instructions. Applied to the assessment of skills after neurological pathologies, previous experiences in stroke patients have been found. So, this work was centered on the Spinal Cord Injury. Objective: To present the virtual application of the Box and Block scale, as well as details about its design and development for its manipulation based on Leap Motion Controller. Methodology: The relationship between the results obtained in the actual test and in the virtual application in healthy subjects and, mostly, patients with cervical spinal cord injury is analyzed, obtaining a high correlation index between both tests’ performance. Results: A high correlation index was obtained between both tests performance, the real and virtual version of the Box and Block Test. Conclusion: This virtual test can serve as an element to evaluate in the future the effectiveness of the RehabHand prototype based on virtual reality applications with a therapeutic and a rehabilitative sense that, manipulated from Leap Motion Controller, allow the improvement of the manipulative dexterity in patients with neurological diseases such as spinal cord injury.展开更多
文摘The early involvement of test and evaluation can significantly reduce the cost of modifying issues and errors found in the later stages of aircraft development and design process.This paper presents a methodology for aircraft mission effectiveness evaluation and design space exploration based on Virtual Operational Test(VOT),incorporating Virtual Open Scenario(VOS)and User in Scenarios(UIS)concepts.By employing modeling and simulation technologies in the early stages of aircraft development and design,a virtual environment can be constructed,allowing aircraft users to participate more closely and conveniently in the design process.Virtual tests conducted by users within the mission context provide data on mission effectiveness and critical user feedback.This paper outlines the main components of the virtual operational test process and related conceptual methods,and discusses an open support system framework that supports VOT.The effectiveness and adaptability of the method are demonstrated through two case studies:a beyond-visual-range air combat scenario and a helicopter ground attack scenario.These case studies demonstrate the evaluation of aircraft mission effectiveness and the sensitivity analysis and optimization of design and operational parameters based on VOT.
文摘This study aims to construct a virtual twin testing framework for the safety of the intended functionality of intelligent connected vehicles to address the safety requirements of intelligent driving and transportation systems.The research methods include the construction of a theoretical model of safety for intelligent connected vehicles based on the concept of virtual twins,the correlation study between key concepts and functional safety,and the application research of virtual twin technology in the safety testing of intelligent connected vehicles.The results reveal that the virtual twin testing framework can effectively enhance the functional safety of intelligent connected vehicles,reduce development costs,and shorten the product launch cycle.The conclusion suggests that this framework provides strong support for the healthy development of the intelligent connected vehicle industry and has a positive impact on the safety and efficiency of intelligent transportation systems.
文摘Technological trends in the automotive industry toward a software-defined and autonomous vehicle require a reassessment of today’s vehicle development process.The validation process soaringly shapes after starting with hardware-in-the-loop testing of control units and reproducing real-world maneuvers and physical interaction chains.Here,the road-to-rig approach offers a vast potential to reduce validation time and costs significantly.The present research study investigates the maneuver reproduction of drivability phenomena at a powertrain test bed.Although drivability phenomena occur in the frequency range of most up to 30∙Hz,the design and characteristics substantially impact the test setup’s validity.By utilization of modal analysis,the influence of the test bed on the mechanical characteristic is shown.Furthermore,the sensitivity of the natural modes of each component,from either specimen or test bed site,is determined.In contrast,the uncertainty of the deployed measurement equipment also affects the validity.Instead of an accuracy class indication,we apply the ISO/IEC Guide 98 to the measurement equipment and the test bed setup to increase the fidelity of the validation task.In conclusion,the present paper contributes to a traceable validity determination of the road-to-rig approach by providing objective metrics and methods.
基金support from the National Natural Science Foundation of China(Grant No.52408356)the China Scholarship Council(CSC).
文摘The interpretation of the cone penetration test(CPT)still relies largely on empirical correlations that have been predominantly developed in resource-intensive and time-consuming calibration chambers.This paper presents a CPT virtual calibration chamber using deep learning(DL)approaches,which allow for the consideration of depth-dependent cone resistance profiles through the implementation of two proposed strategies:(1)depth-resistance mapping using a multilayer perceptron(MLP)and(2)sequence-to-sequence training using a long short-term memory(LSTM)neural network.Two DL models are developed to predict cone resistance profiles(qc)under various soil states and testing conditions,where Bayesian optimization(BO)is adopted to identify the optimal hyperparameters.Subsequently,the BO-MLP and BO-LSTM networks are trained using the available data from published datasets.The results show that the models with BO can effectively improve the prediction accuracy and efficiency of neural networks compared to those without BO.The two training strategies yielded comparable results in the testing set,and both can be used to reproduce the whole cone resistance profile.An extended comparison and validation of the prediction results are carried out against numerical results obtained from a coupled Eulerian-Lagrangian(CEL)model,demonstrating a high degree of agreement between the DL and CEL models.Ultimately,to demonstrate the usability of this new virtual calibration chamber,the predicted qc is used to enhance the preceding correlations with the relative density(Dr)of the sand.The improved correlation with superior generalization has an R^(2) of 82%when considering all data,and 89.6%when examining the pure experimental data.
文摘This paper introduces a kind of substitute bench testing method for vehicle application development and testing method of the test requirements,including battery fast conversion cycle test equipment,enter type incubator,liquid-cooled machine and ancillary equipment composed of a set of test system,through the walk-in constant temperature box to simulate the new energy vehicles under different environmental conditions of the test requirements,Liquid-cooled machine and auxiliary parts to complete the battery thermal management system need cooling fluid conditions,the battery conversion cycle test equipment to simulate the dc fast charging way of filling pile,complete battery thermal management system test,shorten the filling fast charging time and improve battery fast charge security,for troubleshooting and data collection and analysis,Improve work efficiency,save costs,and eliminate customer anxiety about battery life and charging time.
基金The National Natural Science Foundation of China(No.51108081)
文摘In order to investigate the permanent deformation behavior of asphalt mixtures from discontinuity, the virtual rutting test of asphalt mixtures is developed by the discrete element method (DEM). A digital specimen generation procedure considering aggregate gradation and irregular shape is developed based on the probability theory and the Monte Carlo method. The virtual rutting test is then conducted based on the generated digital specimen. In addition, on the basis of the time-temperature superposition (TTS) principle, a calculation method is used to reduce the computation time of the virtual rutting test. The simulation results are compared with the laboratory measurements. The results show that the calculation method based on the TFS principle in the discrete element (DE) viscoelastic model can significantly reduce the computation time. The deformation law of asphalt mixtures in the virtual rutting test is similar to the laboratory measurements, and the deformation and the dynamic stability of the virtual rutting test are slightly greater than the laboratory measurements. The two-dimensional virtual rutting test can predict the permanent deformation performance of asphalt mixtures.
基金Supported by the Fund from COPC PL19-3 FPSO Project
文摘This paper describes the model test and the virtual simulation respectively for the VLCC class FPSO hookup, as well as addresses their different applications to the mating operation between the FPSO and the soft yoke mooring system (SYMS) in extremely shallow water. The scope of the model test and the virtual simulation covers various installation stages including a series of positioning trials, positioning keeping and temporary mooring to the pre-installed SYMS mooring tower, pendulum mating, and yoke ballasting to storm-safe. The model test is to accurately verify bollard pull capacity to keep the FPSO in position and assess motion responses and mooring loads for the FPSO and installation vessels during various installation stages. The virtual simulation is to provide a virtual-reality environment, thus realistically replicating the hookup operation at the Simulation Test Center (STC) facility and identifying any deficiencies in key installation personnel, execution plan, or operation procedures. The methodologies of the model test and the virtual simulation addressed here can be easily extended to the deepwater applications such as positioning and installation operations of various floating systems.
基金supported by National Natural Science Foundation of China (No.51105369)
文摘Testability virtual test is a new test method for testability verification, which has the advantages such as low cost, few restrictions and large sample of test data. It can be used to make up the deficiency of testability physical test. In order to take the advantage of testability virtual test data effectively and to improve the accuracy of testability evaluation, a testability integrated eval- uation method is proposed in this paper based on testability virtual test data. Considering the char- acteristic of testability virtual test data, the credibility analysis method for testability virtual test data is studied firstly. Then the integrated calculation method is proposed fusing the testability vir- tual and physical test data. Finally, certain helicopter heading and attitude system is presented to demonstrate the proposed method. The results show that the testability integrated evaluation method is feasible and effective.
文摘Framework and basic parameters of a test bench for motor drive system of electric vehicle (EV) are illuminated. Two kinds of electric drive models, one was for the electric vehicle drived on real road, the other was for that on test bench, are put forward. Then, dynamic analysis of these models is made in detail. Inertia matching method of the test bench is researched and some useful formulas and graphs are brought forward. The experiment of an electric bus is introduced in order to explain the usage of this inertia matching method.
基金supported by the Equipment Pre-research Common Technology Project,China(No.41406010101).
文摘Circulation Control(CC) realizes rudderless flight control by driving compressed air jet to generate a virtual rudder surface, which significantly improves low detectability. The layout plan of combined control rudder surface is proposed based on the tailless flying wing aircraft. The closed-loop jet actuator system and stepless rudder surface switching control strategy are used to quantitatively study the control characteristics of circulation actuator for pitch and roll attitude through 3-DOF virtual flight test in a wind tunnel with a powered model at wind speed of 40 m/s. The results show that the combined use of circulation actuators can achieve bidirectional continuous and stable control of the aircraft’s pitch and roll attitude, with the maximum pitch rate of 12.3(°)/s and the maximum roll rate of 21.5(°)/s;the response time of attitude angular rate varying with the jet pressure ratio is less than 0.02 s, which can satisfy the control response requirements of aircraft motion stability for the control system;the jet rudder surface has a strong moment control ability, and the pitch moment of the jet elevator with a pressure ratio of 1.28 is the same as that of the mechanical elevator with 28° rudder deflection, which can expand the flight control boundary.
文摘This paper presents the design and implementation of reconfigurable virtual environments (VEs) for virtual testing. It proposes a hybrid design approach that is derived from a so-called integration and composition of the reconfiguration strategy. The designing process has thus evolved from binding virtual objects using reconfiguration rules within the context of virtual testing scenarios. Therefore reconfigurable virtual environments are established with improved flexibility and scalability, tailored to a wide range of virtual testing applications. Those virtual environments integrate virtual testing scenarios, data acquisition, databases, rule mapping and application interfaces, which yield modular testing functions and an open-ended system architecture with a set of extensible interface tools to realize data exchange within reconfigurable VEs. This enables virtual testing scenarios to be reconfigured interactively based on real time data and communication between virtual environments and real environments. A virtual testing application has been implemented using reconfigurable VEs. Keywords Virtual environment - virtual testing - reconfigurable virtual reality Wenyan Wu graduated from Dalian University of Technology, China, with BSc and MSc in 1988 and 1991 respectively. She earned her PhD degree from University of Derby, UK, in 2002. She had taught and researched in Harbin Institute of Technology, China and De Montfort University, UK. She is currently a senior lecturer in simulation and virtual reality at Staffordshire University, UK. Her research interests include computer graphics, Virtual Reality and Augmented Reality system, advanced interface, modelling and simulation, distribution system.Zhengxu Zhao BSc, MSc, PhD, CEng, CITP, MBCS, full Professor in Applied Computing, Director of Virtual Reality Centre. He is also a Cheng Kong Scholar Project Professor in Virtual Reality Technology and Director of Virtual Reality Research Centre at the Southeast University, P R China. Professor Zhao’s research interests include computing graphics and VR systems, industrial process simulation, CIM and manufacturing management systems.
基金Project(51378006) supported by National Natural Science Foundation of ChinaProject(141076) supported by Huoyingdong Foundation of the Ministry of Education of China+1 种基金Project(2242015R30027) supported by Excellent Young Teacher Program of Southeast University,ChinaProject(BK20140109) supported by the Natural Science Foundation of Jiangsu Province,China
文摘The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.
文摘Objective To describe changes that occur in stent morphology and structure after its implantation in coronary bifurcation.Side branch (SB) compromise after stenting of main vessel in coronary bifurcation is a major intraprocedural problem and for the long term,as a place of restenosis.Methods We created an elastic wall model (parent vessel diameter 3.5mm,daughter branches 3.5mm and 2.75mm)with 30,45 and 60 degree distal angulation between branches.After stent implantation,struts to the side branch were opened with 2.0mm and consequently 3.0mm diameter balloons.Subsequent balloon redilatations and kissing balloon inflations (KBI) were performed.All stages of the procedure were photographed with magnification up to 100 times.Results We found that the leading mechanism for side branch compromise was carina displacement,and discovered theoretical description for expected ostial stenosis severity.Based on our model we found that displacement of bifurcation flow divider cause SB stenosis with almost perfect coincidence with our theoretical predictions.Opening of stent cells through the proximal and distal stent struts always increased interslrut distance,but never achieved good apposition to the wall.Balloon diameter increase didn't give proportional enlargement in stent cell diameters.KBI leads to some small better stent positioning,correcting main vessel strut dislodgment from wall,but never gave full strut-wall contact.Distance between struts and wall was minimal only when the stent cell perfectly faced ostium of SB.This was also our observation that the shape of ostium of SB becomed eUiptically-bean shaped after stent implantation and generally kept that shape during consequent stages of experiment.Measured diameter and area stenosis were perfectly fitted and theoretically predicted from our concept Conclusion We have described stent-wall deformations in stent-balloon technique for treatment of coronary bifurcation demonstrating carina displacement as possibly main mechanism of side branch compromise after main vessel stenting.We have shown that KBI could not give full strut-wall contact if there is no perfect facing of stem cell and SB ostium.(J Geroatr Cardool 2008;5(1):43-49)
基金supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province of China(No.KYCX18_0250)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,a Professional Competence Foundation of Shanghai Aircraft Design+1 种基金Research Institute,Key Laboratory of Unsteady AerodynamicsFlow Control,Ministry oflndus-try and Information Technology and the Fundamental Research Funds for the Central Universities(No.NP 2020403)and National Natural Science Foundation of China(12072155).
文摘As one of the promising configurations of the next generation of commercial aircraft,research on departure characteristics of the Blended-Wing-Body(BWB)is of great signification to safe flight limits.A three-degree-of-freedom(3-DOF)virtual flight test in a wind tunnel has been implemented for a candidate configuration to predict the departure characteristics.The support mechanism,the test model and the control law of the virtual flight test are introduced.In order to show the relationship between virtual flight test and actual flight test,the similarity criterion is also given.In open loop,the model has mild oscillations in the longitudinal and lateral directions,which are stable in closed-loop.The effect of flight control has been verified in virtual flight and actual subscale flight test.The analysis of system identification results indicate that the model has a good response to the excitation signal,and the response is in reasonable agreement with the flight test.Finally,the virtual flight departure test results are compared with the flight test.It shows that there is a good correspondence between the angle of attack and the elevator deflection at departure.This gives promising evidence of the practicability of virtual flight testing to predict departure of a BWB.
基金Projects 50574091 and 50774084 supported by the National Natural Science Foundation of China
文摘The authors have created a virtual test of vibration particle-screening using Autodesk's 3ds Max software,the MAXScript scripting language and the AGEIA PhysX physics processing unit(PPU).The affect of various parameters on screening efficiency were modeled.The parameters included vibration amplitude,frequency and direction.The length and inclination of the vibrating surface were also varied.The virtual experiment is in basic agreement with results predicted from screening theory.This shows that the virtual screener can be used for preliminary investigations and the results used to evaluate screen design.In addition it can help with theoretical research.
基金the Ministerial Level Advanced Research Foundation (404050301 .4)
文摘A unit pump test bench is developed on an in-line pump test platform. The bench is composed of pump adapting assembly, fuel supply subsystem, lubricating subsystem and a control unit. A crank angle domain injection control method is given out and the control accuracy can be 0.1° crank degree. The bench can test both mechanical unit pump and electronic unit pump. A test model-PLD12 electronic unit pump is tested. Full pump delivery map and some influence factors test is done. Experimental results show that the injection quantity is linear with the delivery angle. The quantity change rate is 15% when fuel temperature increases 30 ℃. The delivery quantity per cycle increases 30 mg at 28 V drive voltage. The average delivery difference for two same type pumps is 5 %. Test results show that the bench can be used for unit pump verification.
基金National Natural Science Foundation of China(51105369)
文摘Virtual testability demonstration test has many advantages,such as low cost,high efficiency,low risk and few restrictions.It brings new requirements to the fault sample generation.A fault sample simulation approach for virtual testability demonstration test based on stochastic process theory is proposed.First,the similarities and differences of fault sample generation between physical testability demonstration test and virtual testability demonstration test are discussed.Second,it is pointed out that the fault occurrence process subject to perfect repair is renewal process.Third,the interarrival time distribution function of the next fault event is given.Steps and flowcharts of fault sample generation are introduced.The number of faults and their occurrence time are obtained by statistical simulation.Finally,experiments are carried out on a stable tracking platform.Because a variety of types of life distributions and maintenance modes are considered and some assumptions are removed,the sample size and structure of fault sample simulation results are more similar to the actual results and more reasonable.The proposed method can effectively guide the fault injection in virtual testability demonstration test.
基金Funding National Natural Science Foundation of China,52004174Major Science and Technology Projects in Shanxi Province,202101020101021+2 种基金Fund for Shanxi“1331”ProjectKey Project of the Chinese Society of Academic Degrees and Graduate Education,2020ZDA12Natural Science Foundation of Shanxi Province,201901D211022.
文摘A smart fully mechanized coal mining working face is comprised of various heterogeneous equipment that work together in unknown coal seam environments.The goal is to form a smart operational system with comprehensive perception,decisionmaking,and control.This involves many work points and complex coupling relationships,indicating it needs to be performed in stages and coordinated to address key problems in all directions and along multiple points.However,there are no existing unifed test or analysis tools.Therefore,this study proposed a virtual test and evaluation method for a fully mechanized mining production system with diferent smart levels.This is based on the concept of“real data processing–virtual scene construction–setting key information points–virtual operation and evaluation.”The actual operational data for a specifc working face geology and equipment were reasonably transformed into a visual virtual scene through a movement relationship model.The virtual operations and mining conditions of the working face were accurately reproduced.Based on the sensor and execution error analyses for diferent smart levels,the input interface for sensing,decision-making,and control was established for each piece of equipment,and an operation evaluation system was constructed.The system comprehensively simulates and tests the key points of sensing decision-making and control with various smart levels.The experimental results showed that the virtual scene constructed based on actual operational data has a high simulation degree.Users can simulate,analyze,and evaluate the overall operations of the smart mining 2.0–4.0 working face by inputting key information.The future direction for the smart development of fully mechanized mining is highlighted.
文摘In order to obtain the primary parameters and operating characteristics of a DC motor without directly measuring its torque and rational speed, it is proposed to use a PC and a data acquisition card to acquire both the dynamic and static data of armature current to establish the performance of a DC permanent magnet motor. The accuracy and validity of this virtual test system proposed were verified by comparing the measurements made with the system proposed with the measurements made with conventional torque meters. It is concluded from the results of comparison that from the mathematic model established for the DC permant magnet motors, both major parameters and operating characteristics can be directly established for the DC motors without measuring their torques and rotational speed, a perfect on line measurement and test system has been established for the DC permanent magnet motors using the theory of virtual test system. The system proposed features shorter test time, higher efficiency and lower cost.
文摘Background: The Box and Block clinical test is a validated and standardized scale for use in the clinical environment that allows the assessment of rough manipulative dexterity. Proposing virtual methods to carry out these assessments is an attempt to eliminate some of the subjectivity that the test may entail depending on the observer and the way in which the patient gives instructions. Applied to the assessment of skills after neurological pathologies, previous experiences in stroke patients have been found. So, this work was centered on the Spinal Cord Injury. Objective: To present the virtual application of the Box and Block scale, as well as details about its design and development for its manipulation based on Leap Motion Controller. Methodology: The relationship between the results obtained in the actual test and in the virtual application in healthy subjects and, mostly, patients with cervical spinal cord injury is analyzed, obtaining a high correlation index between both tests’ performance. Results: A high correlation index was obtained between both tests performance, the real and virtual version of the Box and Block Test. Conclusion: This virtual test can serve as an element to evaluate in the future the effectiveness of the RehabHand prototype based on virtual reality applications with a therapeutic and a rehabilitative sense that, manipulated from Leap Motion Controller, allow the improvement of the manipulative dexterity in patients with neurological diseases such as spinal cord injury.