Passive source imaging can reconstruct body wave reflections similar to those of active sources through seismic interferometry(SI).It has become a low-cost,environmentally friendly alternative to active source seismic...Passive source imaging can reconstruct body wave reflections similar to those of active sources through seismic interferometry(SI).It has become a low-cost,environmentally friendly alternative to active source seismic,showing great potential.However,this method faces many challenges in practical applications,including uneven distribution of underground sources and complex survey environments.These situations seriously affect the reconstruction quality of virtual shot records,resulting in unguaranteed imaging results and greatly limiting passive source seismic exploration applications.In addition,the quality of the reconstructed records is directly related to the time length of the noise records,but in practice it is often difficult to obtain long-term,high-quality noise segments containing body wave events.To solve the above problems,we propose a deep learning method for reconstructing passive source virtual shot records and apply it to passive source time-lapse monitoring.This method combines the UNet network and the BiLSTM(Bidirectional Long Short-Term Memory)network for extracting spatial features and temporal features respectively.It introduces the spatial attention mechanism to establish a hybrid SUNet-BiLSTM-Attention(SBA)network for supervised training.Through pre-training and fine-tuning training,the network can accurately reconstruct passive source virtual shot records directly from short-time noisy segments containing body wave events.The experimental results of theoretical data show that the virtual shot records reconstructed by the network have high resolution and signal to noise ratio(SNR),providing high-quality data for subsequent monitoring and imaging.Finally,to further validate the effectiveness of proposed method,we applied it to field data collected from gas storage in northwest China.The reconstruction results of field data effectively improve the quality of virtual records and obtain more reliable time-lapse imaging monitoring results,which have significant practical value.展开更多
One-dimensional (ID) integral imaging based on parallax images' virtual reconstruction is proposed. The 1D integral imaging contains parallax images' capture process, parallax images' virtual reconstruction proce...One-dimensional (ID) integral imaging based on parallax images' virtual reconstruction is proposed. The 1D integral imaging contains parallax images' capture process, parallax images' virtual reconstruction process, and ID elemental image array's generation process. A pixel mapping algorithm is deduced to implement the last two processes; a ID elemental image array is generated by the mapping of pixels on the parallax images obtained using a ID camera array. The proposed ID integral imaging can capture the ID elemental image array of a real three-dimensional (3D) scene.展开更多
During the last years, the topic of accessibility of cultural heritage is getting so important all around the Europe. For disseminating a research data and information, it is important to use a simple language and an...During the last years, the topic of accessibility of cultural heritage is getting so important all around the Europe. For disseminating a research data and information, it is important to use a simple language and an effective communication. The data research produced by specialists has three formal levels: The third one of communication system aims to break barriers to reach a wide audience. The present study wants to demonstrate the role of images in the process of deductive inference by three dimensional (3D) reconstruction of cultural heritage. The case study of Federico da Montefeltro office shows how inter-disciplinary works and technological resource can help society to understand history and meaning of heritage.展开更多
Mixed reality technologies provide real-time and immersive experiences,which bring tremendous opportunities in entertainment,education,and enriched experiences that are not directly accessible owing to safety or cost....Mixed reality technologies provide real-time and immersive experiences,which bring tremendous opportunities in entertainment,education,and enriched experiences that are not directly accessible owing to safety or cost.The research in this field has been in the spotlight in the last few years as the metaverse went viral.The recently emerging omnidirectional video streams,i.e.,360°videos,provide an affordable way to capture and present dynamic real-world scenes.In the last decade,fueled by the rapid development of artificial intelligence and computational photography technologies,the research interests in mixed reality systems using 360°videos with richer and more realistic experiences are dramatically increased to unlock the true potential of the metaverse.In this survey,we cover recent research aimed at addressing the above issues in the 360°image and video processing technologies and applications for mixed reality.The survey summarizes the contributions of the recent research and describes potential future research directions about 360°media in the field of mixed reality.展开更多
基金supported by the CNPC-SWPU Innovation Alliance Technology Cooperation Project(2020CX020000)the Natural Science Foundation of Sichuan Province(24NSFSC0808)the China Scholarship Council(202306440144).
文摘Passive source imaging can reconstruct body wave reflections similar to those of active sources through seismic interferometry(SI).It has become a low-cost,environmentally friendly alternative to active source seismic,showing great potential.However,this method faces many challenges in practical applications,including uneven distribution of underground sources and complex survey environments.These situations seriously affect the reconstruction quality of virtual shot records,resulting in unguaranteed imaging results and greatly limiting passive source seismic exploration applications.In addition,the quality of the reconstructed records is directly related to the time length of the noise records,but in practice it is often difficult to obtain long-term,high-quality noise segments containing body wave events.To solve the above problems,we propose a deep learning method for reconstructing passive source virtual shot records and apply it to passive source time-lapse monitoring.This method combines the UNet network and the BiLSTM(Bidirectional Long Short-Term Memory)network for extracting spatial features and temporal features respectively.It introduces the spatial attention mechanism to establish a hybrid SUNet-BiLSTM-Attention(SBA)network for supervised training.Through pre-training and fine-tuning training,the network can accurately reconstruct passive source virtual shot records directly from short-time noisy segments containing body wave events.The experimental results of theoretical data show that the virtual shot records reconstructed by the network have high resolution and signal to noise ratio(SNR),providing high-quality data for subsequent monitoring and imaging.Finally,to further validate the effectiveness of proposed method,we applied it to field data collected from gas storage in northwest China.The reconstruction results of field data effectively improve the quality of virtual records and obtain more reliable time-lapse imaging monitoring results,which have significant practical value.
基金supported by the National Natural Science Foundation of China(No.61036008)the National "863" Program of China(No.2012AA011901)the International Science and Technology Cooperation Program of China(No.2012DFG11610)
文摘One-dimensional (ID) integral imaging based on parallax images' virtual reconstruction is proposed. The 1D integral imaging contains parallax images' capture process, parallax images' virtual reconstruction process, and ID elemental image array's generation process. A pixel mapping algorithm is deduced to implement the last two processes; a ID elemental image array is generated by the mapping of pixels on the parallax images obtained using a ID camera array. The proposed ID integral imaging can capture the ID elemental image array of a real three-dimensional (3D) scene.
文摘During the last years, the topic of accessibility of cultural heritage is getting so important all around the Europe. For disseminating a research data and information, it is important to use a simple language and an effective communication. The data research produced by specialists has three formal levels: The third one of communication system aims to break barriers to reach a wide audience. The present study wants to demonstrate the role of images in the process of deductive inference by three dimensional (3D) reconstruction of cultural heritage. The case study of Federico da Montefeltro office shows how inter-disciplinary works and technological resource can help society to understand history and meaning of heritage.
基金supported by the Marsden Fund Council managed by Royal Society of New Zealand under Grant Nos.MFP-20-VUW-180 and UOO1724Zhejiang Province Public Welfare Technology Application Research under Grant No.LGG22F020009the Key Lab of Film and TV Media Technology of Zhejiang Province of China under Grant No.2020E10015.
文摘Mixed reality technologies provide real-time and immersive experiences,which bring tremendous opportunities in entertainment,education,and enriched experiences that are not directly accessible owing to safety or cost.The research in this field has been in the spotlight in the last few years as the metaverse went viral.The recently emerging omnidirectional video streams,i.e.,360°videos,provide an affordable way to capture and present dynamic real-world scenes.In the last decade,fueled by the rapid development of artificial intelligence and computational photography technologies,the research interests in mixed reality systems using 360°videos with richer and more realistic experiences are dramatically increased to unlock the true potential of the metaverse.In this survey,we cover recent research aimed at addressing the above issues in the 360°image and video processing technologies and applications for mixed reality.The survey summarizes the contributions of the recent research and describes potential future research directions about 360°media in the field of mixed reality.