An analysis of the interaction mechanisms between a Shaped Charge Jet(SCJ) and a single Moving Plate(MP) is proposed in this article using both experimental and numerical approaches. First, an experimental set-up is p...An analysis of the interaction mechanisms between a Shaped Charge Jet(SCJ) and a single Moving Plate(MP) is proposed in this article using both experimental and numerical approaches. First, an experimental set-up is presented. Four collision tests have been performed: two tests in Backward Moving Plate(BMP) configuration, where the plate moves in opposition to jet, and two tests in Forward Moving Plate(FMP) configuration, where the plate moves alongside the jet. Based on the virtual origin approximation,a methodology(the Virtual Origin Method, VOM) is developed to extract quantities from the X-ray images, which serve as comparative data. γSPH simulations are carried out to complete the analysis, as they well capture the disturbance dynamics observed in the experiments. Based on these complementary experimental and numerical results, a new physical description is proposed through a detailed analysis of the interaction. It is shown that the SCJ/MP interaction is driven at first order by the contact geometry. Thus, BMP and FMP configurations do not generate the same disturbances because their local flow geometries are different. In the collision point frame of reference, the BMP flows in the same direction as the jet, causing its overall deflection. On the contrary, the FMP flow opposes that of the jet leading to an alternative creation of fragments and ligaments. An in-depth study, using the VOM shows that deflection angles, fragment-ligament creation frequencies, and deflection velocities evolve as the interaction progresses through slower jet elements.展开更多
In this paper,the penetration mechanism of reactive jet with non-uniform density distribution is studied.The simulations show that the density deficit occurs in the whole reactive jet,and the density increases from th...In this paper,the penetration mechanism of reactive jet with non-uniform density distribution is studied.The simulations show that the density deficit occurs in the whole reactive jet,and the density increases from the jet tip to tail.The density of jet tip is approximately 1.5 g/cm3,which is lower than that of the reactive liner materials.The X-ray experiments show similar results with the simulations.The density decreasing effect of jet tip has a significant influence on the penetration behavior when the reactive jet impacts steel plate.According to the simulation results,this paper assumes that the density gradient in the jet section has linear distribution.Then,the deflagration pressure generated by each jet element at the bottom of crater is introduced into the Bernoulli equation.Based on the virtual origin model and Szendrei-Held equation,the analytical models for penetration depth and radial cratering of reactive jet with the density reduction are obtained.Moreover,to further prove the validity of analytical models,the penetration experiments of the reactive liner shaped charge against steel plate under different standoffs are carried out.There is a convergence between the analytical crater profiles and experimental results when reactive jets penetrate steel plates under different standoffs,especially at standoff of 1.5 and 2.0charge diameters.展开更多
基金supported by the Ministère des Armées,and the Agence de l'Innovation de Défense(AID).
文摘An analysis of the interaction mechanisms between a Shaped Charge Jet(SCJ) and a single Moving Plate(MP) is proposed in this article using both experimental and numerical approaches. First, an experimental set-up is presented. Four collision tests have been performed: two tests in Backward Moving Plate(BMP) configuration, where the plate moves in opposition to jet, and two tests in Forward Moving Plate(FMP) configuration, where the plate moves alongside the jet. Based on the virtual origin approximation,a methodology(the Virtual Origin Method, VOM) is developed to extract quantities from the X-ray images, which serve as comparative data. γSPH simulations are carried out to complete the analysis, as they well capture the disturbance dynamics observed in the experiments. Based on these complementary experimental and numerical results, a new physical description is proposed through a detailed analysis of the interaction. It is shown that the SCJ/MP interaction is driven at first order by the contact geometry. Thus, BMP and FMP configurations do not generate the same disturbances because their local flow geometries are different. In the collision point frame of reference, the BMP flows in the same direction as the jet, causing its overall deflection. On the contrary, the FMP flow opposes that of the jet leading to an alternative creation of fragments and ligaments. An in-depth study, using the VOM shows that deflection angles, fragment-ligament creation frequencies, and deflection velocities evolve as the interaction progresses through slower jet elements.
基金National Key Research and Development Program of China(No.2020YFB1707700)Fundamental Research Funds for the Central Universities,China(No.20D111201)。
文摘基于计算机视觉的虚拟试衣(virtual try-on,VITON)技术是指将试穿服装按照模特图像特征进行扭曲并合成到模特图像中,以替换原有服装部分。当前的虚拟试衣技术主要存在两个问题:保留模特图像头部、下装和背景等原有特征不足;扭曲后的试穿服装与模特图像匹配度不高。针对这两个问题,提出一种原有特征保持虚拟试衣网络(original feature preserving virtual try-on network,OFP-VTON),由语义分割图生成、试穿服装扭曲和试穿图像合成三部分组成。在试穿服装扭曲阶段通过使网络学习模特图像中所穿服装的扭曲映射,以更好地约束试穿服装扭曲;在试穿图像合成阶段提取并保留模特图像原有特征,并引入感受野模块(receptive field block,RFB)以尽可能保留试穿服装特征。在公开的VITON数据集上的定性与定量实验表明,OFP-VTON能更好地保留原有特征,扭曲后的试穿服装与模特图像匹配度高。
基金supported by the National Natural Science Foundation of China(No.12002046)the China Postdoctoral Science Foundation(No.2020M680392)。
文摘In this paper,the penetration mechanism of reactive jet with non-uniform density distribution is studied.The simulations show that the density deficit occurs in the whole reactive jet,and the density increases from the jet tip to tail.The density of jet tip is approximately 1.5 g/cm3,which is lower than that of the reactive liner materials.The X-ray experiments show similar results with the simulations.The density decreasing effect of jet tip has a significant influence on the penetration behavior when the reactive jet impacts steel plate.According to the simulation results,this paper assumes that the density gradient in the jet section has linear distribution.Then,the deflagration pressure generated by each jet element at the bottom of crater is introduced into the Bernoulli equation.Based on the virtual origin model and Szendrei-Held equation,the analytical models for penetration depth and radial cratering of reactive jet with the density reduction are obtained.Moreover,to further prove the validity of analytical models,the penetration experiments of the reactive liner shaped charge against steel plate under different standoffs are carried out.There is a convergence between the analytical crater profiles and experimental results when reactive jets penetrate steel plates under different standoffs,especially at standoff of 1.5 and 2.0charge diameters.