Network virtualization(NV) is widely considered as a key component of the future network and promises to allow multiple virtual networks(VNs) with different protocols to coexist on a shared substrate network(SN). One ...Network virtualization(NV) is widely considered as a key component of the future network and promises to allow multiple virtual networks(VNs) with different protocols to coexist on a shared substrate network(SN). One main challenge in NV is virtual network embedding(VNE). VNE is a NPhard problem. Previous VNE algorithms in the literature are mostly heuristic, while the remaining algorithms are exact. Heuristic algorithms aim to find a feasible embedding of each VN, not optimal or sub-optimal, in polynomial time. Though presenting the optimal or sub-optimal embedding per VN, exact algorithms are too time-consuming in smallscaled networks, not to mention moderately sized networks. To make a trade-off between the heuristic and the exact, this paper presents an effective algorithm, labeled as VNE-RSOT(Restrictive Selection and Optimization Theory), to solve the VNE problem. The VNERSOT can embed virtual nodes and links per VN simultaneously. The restrictive selection contributes to selecting candidate substrate nodes and paths and largely cuts down on the number of integer variables, used in the following optimization theory approach. The VNE-RSOT fights to minimize substrate resource consumption and accommodates more VNs. To highlight the efficiency of VNERSOT, a simulation against typical and stateof-art heuristic algorithms and a pure exact algorithm is made. Numerical results reveal that virtual network request(VNR) acceptance ratio of VNE-RSOT is, at least, 10% higher than the best-behaved heuristic. Other metrics, such as the execution time, are also plotted to emphasize and highlight the efficiency of VNE-RSOT.展开更多
Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living(AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applic...Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living(AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applications in cloud data centers(CDCs). This paper focuses on modeling and analysis of multi-tier AAL applications, and aims to optimize resource provisioning while meeting requests' response time constraint. This paper models a multi-tier AAL application as a hybrid multi-tier queueing model consisting of an M/M/c queueing model and multiple M/M/1 queueing models. Then, virtual machine(VM) allocation is formulated as a constrained optimization problem in a CDC, and is further solved with the proposed heuristic VM allocation algorithm(HVMA). The results demonstrate that the proposed model and algorithm can effectively achieve dynamic resource provisioning while meeting the performance constraint.展开更多
In order to save the energy and reduce the latency of the end-to-end transmission in mobile ad hoc networks an adaptive and distance-driven power control ADPC scheme is proposed by means of distance research in random...In order to save the energy and reduce the latency of the end-to-end transmission in mobile ad hoc networks an adaptive and distance-driven power control ADPC scheme is proposed by means of distance research in random geometrics. Through mathematical proof the optimal number of relay nodes and the optimal location of each node for data transmission can be obtained when a distance is given.In the ADPC first the source node computes the optimal number and the sites of the relay nodes between the source and the destination nodes.Then it searches feasible relay nodes around the optimal virtual relay-sites and selects one link with the minimal total transmission energy consumption for data transmission.Simulation results show that the ADPC can reduce both the energy dissipation and the end-to-end latency of the transmission.展开更多
In order to overcome the shortcoming of the classical Hungarian algorithm that it can only solve the problems where the total cost is the sum of that of each job, an improved Hungarian algorithm is proposed and used t...In order to overcome the shortcoming of the classical Hungarian algorithm that it can only solve the problems where the total cost is the sum of that of each job, an improved Hungarian algorithm is proposed and used to solve the assignment problem of serial-parallel systems. First of all, by replacing parallel jobs with virtual jobs, the proposed algorithm converts the serial-parallel system into a pure serial system, where the classical Hungarian algorithm can be used to generate a temporal assignment plan via optimization. Afterwards, the assignment plan is validated by checking whether the virtual jobs can be realized by real jobs through local searching. If the assignment plan is not valid, the converted system will be adapted by adjusting the parameters of virtual jobs, and then be optimized again. Through iterative searching, the valid optimal assignment plan can eventually be obtained.To evaluate the proposed algorithm, the valid optimal assignment plan is applied to labor allocation of a manufacturing system which is a typical serial-parallel system.展开更多
基金supported by the National Basic Research Program of China (973 Program) under Grant 2013CB329104the National Natural Science Foundation of China under Grant 61372124 and 61427801the Key Projects of Natural Science Foundation of Jiangsu University under Grant 11KJA510001
文摘Network virtualization(NV) is widely considered as a key component of the future network and promises to allow multiple virtual networks(VNs) with different protocols to coexist on a shared substrate network(SN). One main challenge in NV is virtual network embedding(VNE). VNE is a NPhard problem. Previous VNE algorithms in the literature are mostly heuristic, while the remaining algorithms are exact. Heuristic algorithms aim to find a feasible embedding of each VN, not optimal or sub-optimal, in polynomial time. Though presenting the optimal or sub-optimal embedding per VN, exact algorithms are too time-consuming in smallscaled networks, not to mention moderately sized networks. To make a trade-off between the heuristic and the exact, this paper presents an effective algorithm, labeled as VNE-RSOT(Restrictive Selection and Optimization Theory), to solve the VNE problem. The VNERSOT can embed virtual nodes and links per VN simultaneously. The restrictive selection contributes to selecting candidate substrate nodes and paths and largely cuts down on the number of integer variables, used in the following optimization theory approach. The VNE-RSOT fights to minimize substrate resource consumption and accommodates more VNs. To highlight the efficiency of VNERSOT, a simulation against typical and stateof-art heuristic algorithms and a pure exact algorithm is made. Numerical results reveal that virtual network request(VNR) acceptance ratio of VNE-RSOT is, at least, 10% higher than the best-behaved heuristic. Other metrics, such as the execution time, are also plotted to emphasize and highlight the efficiency of VNE-RSOT.
文摘Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living(AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applications in cloud data centers(CDCs). This paper focuses on modeling and analysis of multi-tier AAL applications, and aims to optimize resource provisioning while meeting requests' response time constraint. This paper models a multi-tier AAL application as a hybrid multi-tier queueing model consisting of an M/M/c queueing model and multiple M/M/1 queueing models. Then, virtual machine(VM) allocation is formulated as a constrained optimization problem in a CDC, and is further solved with the proposed heuristic VM allocation algorithm(HVMA). The results demonstrate that the proposed model and algorithm can effectively achieve dynamic resource provisioning while meeting the performance constraint.
基金The National Basic Research Program of China(973 Program)(No.2009CB320501)the National Natural Science Foundation of China(No.61370209,61272532)the Natural Science Foundation of Jiangsu Province(No.BK2010414,BK2011335)
文摘In order to save the energy and reduce the latency of the end-to-end transmission in mobile ad hoc networks an adaptive and distance-driven power control ADPC scheme is proposed by means of distance research in random geometrics. Through mathematical proof the optimal number of relay nodes and the optimal location of each node for data transmission can be obtained when a distance is given.In the ADPC first the source node computes the optimal number and the sites of the relay nodes between the source and the destination nodes.Then it searches feasible relay nodes around the optimal virtual relay-sites and selects one link with the minimal total transmission energy consumption for data transmission.Simulation results show that the ADPC can reduce both the energy dissipation and the end-to-end latency of the transmission.
文摘In order to overcome the shortcoming of the classical Hungarian algorithm that it can only solve the problems where the total cost is the sum of that of each job, an improved Hungarian algorithm is proposed and used to solve the assignment problem of serial-parallel systems. First of all, by replacing parallel jobs with virtual jobs, the proposed algorithm converts the serial-parallel system into a pure serial system, where the classical Hungarian algorithm can be used to generate a temporal assignment plan via optimization. Afterwards, the assignment plan is validated by checking whether the virtual jobs can be realized by real jobs through local searching. If the assignment plan is not valid, the converted system will be adapted by adjusting the parameters of virtual jobs, and then be optimized again. Through iterative searching, the valid optimal assignment plan can eventually be obtained.To evaluate the proposed algorithm, the valid optimal assignment plan is applied to labor allocation of a manufacturing system which is a typical serial-parallel system.