To address the issues that middleboxes as a fundamental part of today's networks are facing, Network Function Virtualization(NFV)has been recently proposed, which in essence asserts to migrate hardware-based middl...To address the issues that middleboxes as a fundamental part of today's networks are facing, Network Function Virtualization(NFV)has been recently proposed, which in essence asserts to migrate hardware-based middleboxes into software-based virtualized function entities.Due to the demands of virtual services placement in NFV network environment, this paper models the service amount placement problem involving with the resources allocation as a cooperative game and proposes the placement policy by Nash Bargaining Solution(NBS). Specifically,we first introduce the system overview and apply the rigorous cooperative game-theoretic guide to build the mathematical model, which can give consideration to both the responding efficiency of service requirements and the allocation fairness.Then a distributed algorithm corresponding to NBS is designed to achieve predictable network performance for virtual instances placement.Finally, with simulations under various scenarios,the results show that our placement approach can achieve high utilization of network through the analysis of evaluation metrics namely the satisfaction degree and fairness index. With the suitable demand amount of services, the average values of two metrics can reach above 90%. And by tuning the base placement, our solution can enable operators to flexibly balance the tradeoff between satisfaction and fairness of resourcessharing in service platforms.展开更多
Due to the development of network technology,the number of users is increasing rapidly,and the demand for emerging multicast services is becoming more and more abundant,traffic data is increasing day by day,network no...Due to the development of network technology,the number of users is increasing rapidly,and the demand for emerging multicast services is becoming more and more abundant,traffic data is increasing day by day,network nodes are becoming denser,network topology is becoming more complex,and operators’equipment operation and maintenance costs are increasing.Network functions virtualization multicast issues include building a traffic forwarding topology,deploying the required functions,and directing traffic.Combining the two is still a problem to be studied in depth at present,and this paper proposes a two-stage solution where the decisions of these two stages are interdependent.Specifically,this paper decouples multicast traffic forwarding and function delivery.The minimum spanning tree of traffic forwarding is constructed by Steiner tree,and the traffic forwarding is realized by Viterbi-algorithm.Use a general topology network to examine network cost and service performance.Simulation results show that this method can reduce overhead and delay and optimize user experience.展开更多
With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)sat...With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity.展开更多
Virtualization of network/service functions means time sharing network/service(and affiliated)resources in a hyper speed manner.The concept of time sharing was popularized in the 1970s with mainframe computing.The s...Virtualization of network/service functions means time sharing network/service(and affiliated)resources in a hyper speed manner.The concept of time sharing was popularized in the 1970s with mainframe computing.The same concept has recently resurfaced under the guise of cloud computing and virtualized computing.Although cloud computing was originally used in IT for server virtualization,the ICT industry is taking a new look at virtualization.This paradigm shift is shaking up the computing,storage,networking,and ser vice industries.The hope is that virtualizing and automating configuration and service management/orchestration will save both capes and opex for network transformation.A complimentary trend is the separation(over an open interface)of control and transmission.This is commonly referred to as software defined networking(SDN).This paper reviews trends in network/service functions,efforts to standardize these functions,and required management and orchestration.展开更多
Network innovation and business transformation are both necessary for telecom operators to adapt to new situations, but operators face challenges in terms of network bearer complexity, business centralization, and IT/...Network innovation and business transformation are both necessary for telecom operators to adapt to new situations, but operators face challenges in terms of network bearer complexity, business centralization, and IT/CT integration. Network function virtualization (NFV) may inspire new development ideas, but many doubts still exist within industry, especially about how to introduce NFV into an operator' s network. This article describes the latest progress in NFV standardization, NFV requirements and hot technology issues, and typical NFV applications in an operator networks.展开更多
In this,communication world, the Network Function Virtualization concept is utilized for many businesses, small services to virtualize the network nodefunction and to build a block that may connect the chain, communic...In this,communication world, the Network Function Virtualization concept is utilized for many businesses, small services to virtualize the network nodefunction and to build a block that may connect the chain, communication services.Mainly, Virtualized Network Function Forwarding Graph (VNF-FG) has beenused to define the connection between the VNF and to give the best end-to-endservices. In the existing method, VNF mapping and backup VNF were proposedbut there was no profit and reliability improvement of the backup and mapping ofthe primary VNF. As a consequence, this paper offers a Hybrid Hexagon-CostEfficient algorithm for determining the best VNF among multiple VNF and backing up the best VNF, lowering backup costs while increasing dependability. TheVNF is chosen based on the highest cost-aware important measure (CIM) rate,which is used to assess the relevance of the VNF forwarding graph.To achieveoptimal cost-efficiency, VNF with the maximum CIM is selected. After the selection process, updating is processed by three steps which include one backup VNFfrom one SFC, two backup VNF from one Service Function Chain (SFC),and twobackup VNF from different SFC. Finally, this proposed method is compared withCERA, MinCost, MaxRbyInr based on backup cost, number of used PN nodes,SFC request utility, and latency. The simulation result shows that the proposedmethod cuts down the backup cost and computation time by 57% and 45% compared with the CER scheme and improves the cost-efficiency. As a result, this proposed system achieves less backup cost, high reliability, and low timeconsumption which can improve the Virtualized Network Function operation.展开更多
This paper presents a space network emulation system based on a user-space network stack named Nos to solve space networks'unique architecture and routing issues and kernel stacks'inefficiency and development ...This paper presents a space network emulation system based on a user-space network stack named Nos to solve space networks'unique architecture and routing issues and kernel stacks'inefficiency and development complexity.Our low Earth orbit satellite scenario emulation verifies the dynamic routing function of the protocol stack.The proposed system uses technologies like Open vSwitch(OVS)and traffic control(TC)to emulate the space network's highly dynamic topology and time-varying link characteristics.The emulation results demonstrate the system's high reliability,and the user-space network stack reduces development complexity and debugging difficulty,providing convenience for the development of space network protocols and network functions.展开更多
In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the V...In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the Virtual Machines(VMs)cannot be successfully launched due to the server overload.In addition,transferring the data from the AP to the remote DC may cause an undesirable delivery delay.For this end,we propose a promising solution considering the interplay between the cloud DC and edge APs.More specifically,bringing the partial capability of computing in APs close to things can reduce the pressure of DCs while guaranteeing the expected Quality of Service(QoS).In this work,when the cloud DC resource becomes limited,especially for delay sensitive but not computing-dependent IoT applications,we degrade their VMs and migrate them to edge APs instead of the remote DC.To avoid excessive VM degradation and computing offloading,we derive appropriate VM degradation coefficients based on classic microeconomic theory.Simulation results demonstrate that our algorithms improve the service providers'utility with the ratio from 34%to 89%over traditional cloud-centric solutions.展开更多
Recently,Network Functions Virtualization(NFV)has become a critical resource for optimizing capability utilization in the 5G/B5G era.NFV decomposes the network resource paradigm,demonstrating the efficient utilization...Recently,Network Functions Virtualization(NFV)has become a critical resource for optimizing capability utilization in the 5G/B5G era.NFV decomposes the network resource paradigm,demonstrating the efficient utilization of Network Functions(NFs)to enable configurable service priorities and resource demands.Telecommunications Service Providers(TSPs)face challenges in network utilization,as the vast amounts of data generated by the Internet of Things(IoT)overwhelm existing infrastructures.IoT applications,which generate massive volumes of diverse data and require real-time communication,contribute to bottlenecks and congestion.In this context,Multiaccess Edge Computing(MEC)is employed to support resource and priority-aware IoT applications by implementing Virtual Network Function(VNF)sequences within Service Function Chaining(SFC).This paper proposes the use of Deep Reinforcement Learning(DRL)combined with Graph Neural Networks(GNN)to enhance network processing,performance,and resource pooling capabilities.GNN facilitates feature extraction through Message-Passing Neural Network(MPNN)mechanisms.Together with DRL,Deep Q-Networks(DQN)are utilized to dynamically allocate resources based on IoT network priorities and demands.Our focus is on minimizing delay times for VNF instance execution,ensuring effective resource placement,and allocation in SFC deployments,offering flexibility to adapt to real-time changes in priority and workload.Simulation results demonstrate that our proposed scheme outperforms reference models in terms of reward,delay,delivery,service drop ratios,and average completion ratios,proving its potential for IoT applications.展开更多
Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified ne...Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified network lifecycle,and policies management.Network vulnerabilities try to modify services provided by Network Function Virtualization MANagement and Orchestration(NFV MANO),and malicious attacks in different scenarios disrupt the NFV Orchestrator(NFVO)and Virtualized Infrastructure Manager(VIM)lifecycle management related to network services or individual Virtualized Network Function(VNF).This paper proposes an anomaly detection mechanism that monitors threats in NFV MANO and manages promptly and adaptively to implement and handle security functions in order to enhance the quality of experience for end users.An anomaly detector investigates these identified risks and provides secure network services.It enables virtual network security functions and identifies anomalies in Kubernetes(a cloud-based platform).For training and testing purpose of the proposed approach,an intrusion-containing dataset is used that hold multiple malicious activities like a Smurf,Neptune,Teardrop,Pod,Land,IPsweep,etc.,categorized as Probing(Prob),Denial of Service(DoS),User to Root(U2R),and Remote to User(R2L)attacks.An anomaly detector is anticipated with the capabilities of a Machine Learning(ML)technique,making use of supervised learning techniques like Logistic Regression(LR),Support Vector Machine(SVM),Random Forest(RF),Naïve Bayes(NB),and Extreme Gradient Boosting(XGBoost).The proposed framework has been evaluated by deploying the identified ML algorithm on a Jupyter notebook in Kubeflow to simulate Kubernetes for validation purposes.RF classifier has shown better outcomes(99.90%accuracy)than other classifiers in detecting anomalies/intrusions in the containerized environment.展开更多
Edge intelligence brings the deployment of applied deep learning(DL)models in edge computing systems to alleviate the core backbone network congestions.The setup of programmable software-defined networking(SDN)control...Edge intelligence brings the deployment of applied deep learning(DL)models in edge computing systems to alleviate the core backbone network congestions.The setup of programmable software-defined networking(SDN)control and elastic virtual computing resources within network functions virtualization(NFV)are cooperative for enhancing the applicability of intelligent edge softwarization.To offer advancement for multi-dimensional model task offloading in edge networks with SDN/NFV-based control softwarization,this study proposes a DL mechanism to recommend the optimal edge node selection with primary features of congestion windows,link delays,and allocatable bandwidth capacities.Adaptive partial task offloading policy considered the DL-based recommendation to modify efficient virtual resource placement for minimizing the completion time and termination drop ratio.The optimization problem of resource placement is tackled by a deep reinforcement learning(DRL)-based policy following the Markov decision process(MDP).The agent observes the state spaces and applies value-maximized action of available computation resources and adjustable resource allocation steps.The reward formulation primarily considers taskrequired computing resources and action-applied allocation properties.With defined policies of resource determination,the orchestration procedure is configured within each virtual network function(VNF)descriptor using topology and orchestration specification for cloud applications(TOSCA)by specifying the allocated properties.The simulation for the control rule installation is conducted using Mininet and Ryu SDN controller.Average delay and task delivery/drop ratios are used as the key performance metrics.展开更多
With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the netw...With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the network has risen sharply.Due to the high cost of edge computing resources,coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge.In this paper,we focus on optimiz-ing the placement of network services in cloud-edge environ-ments to maximize the efficiency.It is first proved that,in cloud-edge environments,placing one service function chain(SFC)integrally in the cloud or at the edge can improve the utilization efficiency of edge resources.Then a virtual network function(VNF)performance-resource(P-R)function is proposed to repre-sent the relationship between the VNF instance computing per-formance and the allocated computing resource.To select the SFCs that are most suitable to deploy at the edge,a VNF place-ment and resource allocation model is built to configure each VNF with its particular P-R function.Moreover,a heuristic recur-sive algorithm is designed called the recursive algorithm for max edge throughput(RMET)to solve the model.Through simula-tions on two scenarios,it is verified that RMET can improve the utilization efficiency of edge computing resources.展开更多
Recently, integrating Softwaredefined networking(SDN) and network functions virtualization(NFV) are proposed to address the issue that difficulty and cost of hardwarebased and proprietary middleboxes management. Howev...Recently, integrating Softwaredefined networking(SDN) and network functions virtualization(NFV) are proposed to address the issue that difficulty and cost of hardwarebased and proprietary middleboxes management. However, it lacks of a framework that orchestrates network functions to service chain in the network cooperatively. In this paper, we propose a function combination framework that can dynamically adapt the network based on the integration NFV and SDN. There are two main contributions in this paper. First, the function combination framework based on the integration of SDN and NFV is proposed to address the function combination issue, including the architecture of Service Deliver Network, the port types representing traffic directions and the explanation of terms. Second, we formulate the issue of load balance of function combination as the model minimizing the standard deviations of all servers' loads and satisfying the demand of performance and limit of resource. The least busy placement algorithm is introduced to approach optimal solution of the problem. Finally, experimental results demonstrate that the proposed method can combine functions in an efficient and scalable way and ensure the load balance of the network.展开更多
As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof pa...As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof paramount importance.This paper introduces a novel integrated model architecture,combining a networkapplication validation framework with an AI-driven reactive system to enhance security in real-time.The proposedmodel leverages machine learning(ML)and artificial intelligence(AI)to dynamically monitor and respond tosecurity threats,effectively mitigating potential risks before they impact the network infrastructure.This dualapproach not only validates the functionality and performance of network applications before their real deploymentbut also enhances the network’s ability to adapt and respond to threats as they arise.The implementation ofthis model,in the shape of an architecture deployed in two distinct sites,demonstrates its practical viability andeffectiveness.Integrating application validation with proactive threat detection and response,the proposed modeladdresses critical security challenges unique to 5G infrastructures.This paper details the model,architecture’sdesign,implementation,and evaluation of this solution,illustrating its potential to improve network securitymanagement in 5G environments significantly.Our findings highlight the architecture’s capability to ensure boththe operational integrity of network applications and the security of the underlying infrastructure,presenting asignificant advancement in network security.展开更多
The advent of Network Function Virtualization(NFV)and Service Function Chains(SFCs)unleashes the power of dynamic creation of network services using Virtual Network Functions(VNFs).This is of great interest to network...The advent of Network Function Virtualization(NFV)and Service Function Chains(SFCs)unleashes the power of dynamic creation of network services using Virtual Network Functions(VNFs).This is of great interest to network operators since poor service quality and resource wastage can potentially hurt their revenue in the long term.However,the study shows with a set of test-bed experiments that packet loss at certain positions(i.e.,different VNFs)in an SFC can cause various degrees of resource wastage and performance degradation because of repeated upstream processing and transmission of retransmitted packets.To overcome this challenge,this study focuses on resource scheduling and deployment of SFCs while considering packet loss positions.This study developed a novel SFC packet dropping cost model and formulated an SFC scheduling problem that aims to minimize overall packet dropping cost as a Mixed-Integer Linear Programming(MILP)and proved that it is NP-hard.In this study,Palos is proposed as an efficient scheme in exploiting the functional characteristics of VNFs and their positions in SFCs for scheduling resources and deployment to optimize packet dropping cost.Extensive experiment results show that Palos can achieve up to 42.73%improvement on packet dropping cost and up to 33.03%reduction on average SFC latency when compared with two other state-of-the-art schemes.展开更多
Aiming at the rapid growth of network services,which leads to the problems of long service request processing time and high deployment cost in the deployment of network function virtualization service function chain(S...Aiming at the rapid growth of network services,which leads to the problems of long service request processing time and high deployment cost in the deployment of network function virtualization service function chain(SFC)under 5G networks,this paper proposes a multi-agent deep deterministic policy gradient optimization algorithm for SFC deployment(MADDPG-SD).Initially,an optimization model is devised to enhance the request acceptance rate,minimizing the latency and deploying the cost SFC is constructed for the network resource-constrained case.Subsequently,we model the dynamic problem as a Markov decision process(MDP),facilitating adaptation to the evolving states of network resources.Finally,by allocating SFCs to different agents and adopting a collaborative deployment strategy,each agent aims to maximize the request acceptance rate or minimize latency and costs.These agents learn strategies from historical data of virtual network functions in SFCs to guide server node selection,and achieve approximately optimal SFC deployment strategies through a cooperative framework of centralized training and distributed execution.Experimental simulation results indicate that the proposed method,while simultaneously meeting performance requirements and resource capacity constraints,has effectively increased the acceptance rate of requests compared to the comparative algorithms,reducing the end-to-end latency by 4.942%and the deployment cost by 8.045%.展开更多
针对如何在部署服务功能链SFC(service function chain)的同时兼顾低能耗与网络负载均衡,提出了一种以节点负载状态预测为基础的SFC部署方法NIR-IACA(improved ant colony algorithm based on node importance ranking)。首先,使用基于...针对如何在部署服务功能链SFC(service function chain)的同时兼顾低能耗与网络负载均衡,提出了一种以节点负载状态预测为基础的SFC部署方法NIR-IACA(improved ant colony algorithm based on node importance ranking)。首先,使用基于粒子群优化的CNN-GRU模型(particle swarm optimization-based CNN-GRU model,PCNN-GRU),结合广义网络温度(GNT)预测网络节点的负载状态,并据此为SFC部署提供备选节点;其次,基于最短路径优先策略的改进蚁群算法(ant colony algorithm,ACA)设计SFC部署节点选择策略(high availability and resource scheduling,HARS)且对选定节点进行虚拟链路映射,优化目标兼顾基础设施网络低能耗与负载均衡的要求。基于Clearwater VNF公开数据集的实验结果表明,提出的NIR-IACA方法与现有的MC-EEVP算法、DPVC算法以及RQAP算法相比平均节省13.09%的能耗,并提高12.98%的负载均衡能力,且在维持相对较高SFC请求的接受率的同时,可以较好地实现SFC部署的能耗与负载均衡联合优化。展开更多
基金supported by The National Basic Research Program of China (973) (Grant No. 2012CB315901, 2013CB329104)The National Natural Science Foundation of China (Grant No. 61521003, 61372121, 61309019, 61572519, 61502530)The National High Technology Research and Development Program of China (863) (Grant No. 2015AA016102)
文摘To address the issues that middleboxes as a fundamental part of today's networks are facing, Network Function Virtualization(NFV)has been recently proposed, which in essence asserts to migrate hardware-based middleboxes into software-based virtualized function entities.Due to the demands of virtual services placement in NFV network environment, this paper models the service amount placement problem involving with the resources allocation as a cooperative game and proposes the placement policy by Nash Bargaining Solution(NBS). Specifically,we first introduce the system overview and apply the rigorous cooperative game-theoretic guide to build the mathematical model, which can give consideration to both the responding efficiency of service requirements and the allocation fairness.Then a distributed algorithm corresponding to NBS is designed to achieve predictable network performance for virtual instances placement.Finally, with simulations under various scenarios,the results show that our placement approach can achieve high utilization of network through the analysis of evaluation metrics namely the satisfaction degree and fairness index. With the suitable demand amount of services, the average values of two metrics can reach above 90%. And by tuning the base placement, our solution can enable operators to flexibly balance the tradeoff between satisfaction and fairness of resourcessharing in service platforms.
基金supported by the R&D Program of Beijing Municipal Education Commission(Nos.KM202110858003 and2022X003-KXD)。
文摘Due to the development of network technology,the number of users is increasing rapidly,and the demand for emerging multicast services is becoming more and more abundant,traffic data is increasing day by day,network nodes are becoming denser,network topology is becoming more complex,and operators’equipment operation and maintenance costs are increasing.Network functions virtualization multicast issues include building a traffic forwarding topology,deploying the required functions,and directing traffic.Combining the two is still a problem to be studied in depth at present,and this paper proposes a two-stage solution where the decisions of these two stages are interdependent.Specifically,this paper decouples multicast traffic forwarding and function delivery.The minimum spanning tree of traffic forwarding is constructed by Steiner tree,and the traffic forwarding is realized by Viterbi-algorithm.Use a general topology network to examine network cost and service performance.Simulation results show that this method can reduce overhead and delay and optimize user experience.
基金supported in part by the National Natural Science Foundation of China(NSFC)under grant numbers U22A2007 and 62171010the Open project of Satellite Internet Key Laboratory in 2022(Project 3:Research on Spaceborne Lightweight Core Network and Intelligent Collaboration)the Beijing Natural Science Foundation under grant number L212003.
文摘With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity.
文摘Virtualization of network/service functions means time sharing network/service(and affiliated)resources in a hyper speed manner.The concept of time sharing was popularized in the 1970s with mainframe computing.The same concept has recently resurfaced under the guise of cloud computing and virtualized computing.Although cloud computing was originally used in IT for server virtualization,the ICT industry is taking a new look at virtualization.This paradigm shift is shaking up the computing,storage,networking,and ser vice industries.The hope is that virtualizing and automating configuration and service management/orchestration will save both capes and opex for network transformation.A complimentary trend is the separation(over an open interface)of control and transmission.This is commonly referred to as software defined networking(SDN).This paper reviews trends in network/service functions,efforts to standardize these functions,and required management and orchestration.
文摘Network innovation and business transformation are both necessary for telecom operators to adapt to new situations, but operators face challenges in terms of network bearer complexity, business centralization, and IT/CT integration. Network function virtualization (NFV) may inspire new development ideas, but many doubts still exist within industry, especially about how to introduce NFV into an operator' s network. This article describes the latest progress in NFV standardization, NFV requirements and hot technology issues, and typical NFV applications in an operator networks.
文摘In this,communication world, the Network Function Virtualization concept is utilized for many businesses, small services to virtualize the network nodefunction and to build a block that may connect the chain, communication services.Mainly, Virtualized Network Function Forwarding Graph (VNF-FG) has beenused to define the connection between the VNF and to give the best end-to-endservices. In the existing method, VNF mapping and backup VNF were proposedbut there was no profit and reliability improvement of the backup and mapping ofthe primary VNF. As a consequence, this paper offers a Hybrid Hexagon-CostEfficient algorithm for determining the best VNF among multiple VNF and backing up the best VNF, lowering backup costs while increasing dependability. TheVNF is chosen based on the highest cost-aware important measure (CIM) rate,which is used to assess the relevance of the VNF forwarding graph.To achieveoptimal cost-efficiency, VNF with the maximum CIM is selected. After the selection process, updating is processed by three steps which include one backup VNFfrom one SFC, two backup VNF from one Service Function Chain (SFC),and twobackup VNF from different SFC. Finally, this proposed method is compared withCERA, MinCost, MaxRbyInr based on backup cost, number of used PN nodes,SFC request utility, and latency. The simulation result shows that the proposedmethod cuts down the backup cost and computation time by 57% and 45% compared with the CER scheme and improves the cost-efficiency. As a result, this proposed system achieves less backup cost, high reliability, and low timeconsumption which can improve the Virtualized Network Function operation.
基金supported by the National Natural Science Foundation of China under Grant No.62131012ZTE Industry-University-Institute Cooperation Funds under Grant No.IA20230712005。
文摘This paper presents a space network emulation system based on a user-space network stack named Nos to solve space networks'unique architecture and routing issues and kernel stacks'inefficiency and development complexity.Our low Earth orbit satellite scenario emulation verifies the dynamic routing function of the protocol stack.The proposed system uses technologies like Open vSwitch(OVS)and traffic control(TC)to emulate the space network's highly dynamic topology and time-varying link characteristics.The emulation results demonstrate the system's high reliability,and the user-space network stack reduces development complexity and debugging difficulty,providing convenience for the development of space network protocols and network functions.
基金supported by the Researchers Supporting Project of King Saud University,Riyadh,Saudi Arabia,under Project RSPD2025R681。
文摘In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the Virtual Machines(VMs)cannot be successfully launched due to the server overload.In addition,transferring the data from the AP to the remote DC may cause an undesirable delivery delay.For this end,we propose a promising solution considering the interplay between the cloud DC and edge APs.More specifically,bringing the partial capability of computing in APs close to things can reduce the pressure of DCs while guaranteeing the expected Quality of Service(QoS).In this work,when the cloud DC resource becomes limited,especially for delay sensitive but not computing-dependent IoT applications,we degrade their VMs and migrate them to edge APs instead of the remote DC.To avoid excessive VM degradation and computing offloading,we derive appropriate VM degradation coefficients based on classic microeconomic theory.Simulation results demonstrate that our algorithms improve the service providers'utility with the ratio from 34%to 89%over traditional cloud-centric solutions.
基金supported by Institute of Information&Communications Technology Planning and Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00167197,Development of Intelligent 5G/6G Infrastructure Technology for the Smart City)in part by the National Research Foundation of Korea(NRF),Ministry of Education,through the Basic Science Research Program under Grant NRF-2020R1I1A3066543+1 种基金in part by BK21 FOUR(Fostering Outstanding Universities for Research)under Grant 5199990914048in part by the Soonchunhyang University Research Fund.
文摘Recently,Network Functions Virtualization(NFV)has become a critical resource for optimizing capability utilization in the 5G/B5G era.NFV decomposes the network resource paradigm,demonstrating the efficient utilization of Network Functions(NFs)to enable configurable service priorities and resource demands.Telecommunications Service Providers(TSPs)face challenges in network utilization,as the vast amounts of data generated by the Internet of Things(IoT)overwhelm existing infrastructures.IoT applications,which generate massive volumes of diverse data and require real-time communication,contribute to bottlenecks and congestion.In this context,Multiaccess Edge Computing(MEC)is employed to support resource and priority-aware IoT applications by implementing Virtual Network Function(VNF)sequences within Service Function Chaining(SFC).This paper proposes the use of Deep Reinforcement Learning(DRL)combined with Graph Neural Networks(GNN)to enhance network processing,performance,and resource pooling capabilities.GNN facilitates feature extraction through Message-Passing Neural Network(MPNN)mechanisms.Together with DRL,Deep Q-Networks(DQN)are utilized to dynamically allocate resources based on IoT network priorities and demands.Our focus is on minimizing delay times for VNF instance execution,ensuring effective resource placement,and allocation in SFC deployments,offering flexibility to adapt to real-time changes in priority and workload.Simulation results demonstrate that our proposed scheme outperforms reference models in terms of reward,delay,delivery,service drop ratios,and average completion ratios,proving its potential for IoT applications.
基金This work was funded by the Deanship of Scientific Research at Jouf University under Grant Number(DSR2022-RG-0102).
文摘Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified network lifecycle,and policies management.Network vulnerabilities try to modify services provided by Network Function Virtualization MANagement and Orchestration(NFV MANO),and malicious attacks in different scenarios disrupt the NFV Orchestrator(NFVO)and Virtualized Infrastructure Manager(VIM)lifecycle management related to network services or individual Virtualized Network Function(VNF).This paper proposes an anomaly detection mechanism that monitors threats in NFV MANO and manages promptly and adaptively to implement and handle security functions in order to enhance the quality of experience for end users.An anomaly detector investigates these identified risks and provides secure network services.It enables virtual network security functions and identifies anomalies in Kubernetes(a cloud-based platform).For training and testing purpose of the proposed approach,an intrusion-containing dataset is used that hold multiple malicious activities like a Smurf,Neptune,Teardrop,Pod,Land,IPsweep,etc.,categorized as Probing(Prob),Denial of Service(DoS),User to Root(U2R),and Remote to User(R2L)attacks.An anomaly detector is anticipated with the capabilities of a Machine Learning(ML)technique,making use of supervised learning techniques like Logistic Regression(LR),Support Vector Machine(SVM),Random Forest(RF),Naïve Bayes(NB),and Extreme Gradient Boosting(XGBoost).The proposed framework has been evaluated by deploying the identified ML algorithm on a Jupyter notebook in Kubeflow to simulate Kubernetes for validation purposes.RF classifier has shown better outcomes(99.90%accuracy)than other classifiers in detecting anomalies/intrusions in the containerized environment.
基金This work was funded by BK21 FOUR(Fostering Outstanding Universities for Research)(No.5199990914048)this research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2020R1I1A3066543).In addition,this work was supported by the Soonchunhyang University Research Fund.
文摘Edge intelligence brings the deployment of applied deep learning(DL)models in edge computing systems to alleviate the core backbone network congestions.The setup of programmable software-defined networking(SDN)control and elastic virtual computing resources within network functions virtualization(NFV)are cooperative for enhancing the applicability of intelligent edge softwarization.To offer advancement for multi-dimensional model task offloading in edge networks with SDN/NFV-based control softwarization,this study proposes a DL mechanism to recommend the optimal edge node selection with primary features of congestion windows,link delays,and allocatable bandwidth capacities.Adaptive partial task offloading policy considered the DL-based recommendation to modify efficient virtual resource placement for minimizing the completion time and termination drop ratio.The optimization problem of resource placement is tackled by a deep reinforcement learning(DRL)-based policy following the Markov decision process(MDP).The agent observes the state spaces and applies value-maximized action of available computation resources and adjustable resource allocation steps.The reward formulation primarily considers taskrequired computing resources and action-applied allocation properties.With defined policies of resource determination,the orchestration procedure is configured within each virtual network function(VNF)descriptor using topology and orchestration specification for cloud applications(TOSCA)by specifying the allocated properties.The simulation for the control rule installation is conducted using Mininet and Ryu SDN controller.Average delay and task delivery/drop ratios are used as the key performance metrics.
基金This work was supported by the Key Research and Development(R&D)Plan of Heilongjiang Province of China(JD22A001).
文摘With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the network has risen sharply.Due to the high cost of edge computing resources,coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge.In this paper,we focus on optimiz-ing the placement of network services in cloud-edge environ-ments to maximize the efficiency.It is first proved that,in cloud-edge environments,placing one service function chain(SFC)integrally in the cloud or at the edge can improve the utilization efficiency of edge resources.Then a virtual network function(VNF)performance-resource(P-R)function is proposed to repre-sent the relationship between the VNF instance computing per-formance and the allocated computing resource.To select the SFCs that are most suitable to deploy at the edge,a VNF place-ment and resource allocation model is built to configure each VNF with its particular P-R function.Moreover,a heuristic recur-sive algorithm is designed called the recursive algorithm for max edge throughput(RMET)to solve the model.Through simula-tions on two scenarios,it is verified that RMET can improve the utilization efficiency of edge computing resources.
基金supported by the Foundation for Innovative Research Groups of the National Science Foundation of China (Grant No.61521003)The National Basic Research Program of China(973)(Grant No.2012CB315901,2013CB329104)+1 种基金The National Natural Science Foundation of China(Grant No.61372121,61309019,61309020)The National High Technology Research and Development Program of China(863)(Grant No.2015AA016102,2013AA013505)
文摘Recently, integrating Softwaredefined networking(SDN) and network functions virtualization(NFV) are proposed to address the issue that difficulty and cost of hardwarebased and proprietary middleboxes management. However, it lacks of a framework that orchestrates network functions to service chain in the network cooperatively. In this paper, we propose a function combination framework that can dynamically adapt the network based on the integration NFV and SDN. There are two main contributions in this paper. First, the function combination framework based on the integration of SDN and NFV is proposed to address the function combination issue, including the architecture of Service Deliver Network, the port types representing traffic directions and the explanation of terms. Second, we formulate the issue of load balance of function combination as the model minimizing the standard deviations of all servers' loads and satisfying the demand of performance and limit of resource. The least busy placement algorithm is introduced to approach optimal solution of the problem. Finally, experimental results demonstrate that the proposed method can combine functions in an efficient and scalable way and ensure the load balance of the network.
文摘As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof paramount importance.This paper introduces a novel integrated model architecture,combining a networkapplication validation framework with an AI-driven reactive system to enhance security in real-time.The proposedmodel leverages machine learning(ML)and artificial intelligence(AI)to dynamically monitor and respond tosecurity threats,effectively mitigating potential risks before they impact the network infrastructure.This dualapproach not only validates the functionality and performance of network applications before their real deploymentbut also enhances the network’s ability to adapt and respond to threats as they arise.The implementation ofthis model,in the shape of an architecture deployed in two distinct sites,demonstrates its practical viability andeffectiveness.Integrating application validation with proactive threat detection and response,the proposed modeladdresses critical security challenges unique to 5G infrastructures.This paper details the model,architecture’sdesign,implementation,and evaluation of this solution,illustrating its potential to improve network securitymanagement in 5G environments significantly.Our findings highlight the architecture’s capability to ensure boththe operational integrity of network applications and the security of the underlying infrastructure,presenting asignificant advancement in network security.
基金supported by the National Natural Science Foundation of China(NSFC)No.62172189 and 61772235the Natural Science Foundation of Guangdong Province No.2020A1515010771+1 种基金the Science and Technology Program of Guangzhou No.202002030372the UK Engineering and Physical Sciences Research Council(EPSRC)grants EP/P004407/2 and EP/P004024/1,and Innovate UK grant 106199-47198.
文摘The advent of Network Function Virtualization(NFV)and Service Function Chains(SFCs)unleashes the power of dynamic creation of network services using Virtual Network Functions(VNFs).This is of great interest to network operators since poor service quality and resource wastage can potentially hurt their revenue in the long term.However,the study shows with a set of test-bed experiments that packet loss at certain positions(i.e.,different VNFs)in an SFC can cause various degrees of resource wastage and performance degradation because of repeated upstream processing and transmission of retransmitted packets.To overcome this challenge,this study focuses on resource scheduling and deployment of SFCs while considering packet loss positions.This study developed a novel SFC packet dropping cost model and formulated an SFC scheduling problem that aims to minimize overall packet dropping cost as a Mixed-Integer Linear Programming(MILP)and proved that it is NP-hard.In this study,Palos is proposed as an efficient scheme in exploiting the functional characteristics of VNFs and their positions in SFCs for scheduling resources and deployment to optimize packet dropping cost.Extensive experiment results show that Palos can achieve up to 42.73%improvement on packet dropping cost and up to 33.03%reduction on average SFC latency when compared with two other state-of-the-art schemes.
基金The financial support fromthe Major Science and Technology Programs inHenan Province(Grant No.241100210100)National Natural Science Foundation of China(Grant No.62102372)+3 种基金Henan Provincial Department of Science and Technology Research Project(Grant No.242102211068)Henan Provincial Department of Science and Technology Research Project(Grant No.232102210078)the Stabilization Support Program of The Shenzhen Science and Technology Innovation Commission(Grant No.20231130110921001)the Key Scientific Research Project of Higher Education Institutions of Henan Province(Grant No.24A520042)is acknowledged.
文摘Aiming at the rapid growth of network services,which leads to the problems of long service request processing time and high deployment cost in the deployment of network function virtualization service function chain(SFC)under 5G networks,this paper proposes a multi-agent deep deterministic policy gradient optimization algorithm for SFC deployment(MADDPG-SD).Initially,an optimization model is devised to enhance the request acceptance rate,minimizing the latency and deploying the cost SFC is constructed for the network resource-constrained case.Subsequently,we model the dynamic problem as a Markov decision process(MDP),facilitating adaptation to the evolving states of network resources.Finally,by allocating SFCs to different agents and adopting a collaborative deployment strategy,each agent aims to maximize the request acceptance rate or minimize latency and costs.These agents learn strategies from historical data of virtual network functions in SFCs to guide server node selection,and achieve approximately optimal SFC deployment strategies through a cooperative framework of centralized training and distributed execution.Experimental simulation results indicate that the proposed method,while simultaneously meeting performance requirements and resource capacity constraints,has effectively increased the acceptance rate of requests compared to the comparative algorithms,reducing the end-to-end latency by 4.942%and the deployment cost by 8.045%.
文摘针对如何在部署服务功能链SFC(service function chain)的同时兼顾低能耗与网络负载均衡,提出了一种以节点负载状态预测为基础的SFC部署方法NIR-IACA(improved ant colony algorithm based on node importance ranking)。首先,使用基于粒子群优化的CNN-GRU模型(particle swarm optimization-based CNN-GRU model,PCNN-GRU),结合广义网络温度(GNT)预测网络节点的负载状态,并据此为SFC部署提供备选节点;其次,基于最短路径优先策略的改进蚁群算法(ant colony algorithm,ACA)设计SFC部署节点选择策略(high availability and resource scheduling,HARS)且对选定节点进行虚拟链路映射,优化目标兼顾基础设施网络低能耗与负载均衡的要求。基于Clearwater VNF公开数据集的实验结果表明,提出的NIR-IACA方法与现有的MC-EEVP算法、DPVC算法以及RQAP算法相比平均节省13.09%的能耗,并提高12.98%的负载均衡能力,且在维持相对较高SFC请求的接受率的同时,可以较好地实现SFC部署的能耗与负载均衡联合优化。