Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilizat...Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilization efficiency. To meet the diverse needs of tasks, it usually needs to instantiate multiple network functions in the form of containers interconnect various generated containers to build a Container Cluster(CC). Then CCs will be deployed on edge service nodes with relatively limited resources. However, the increasingly complex and timevarying nature of tasks brings great challenges to optimal placement of CC. This paper regards the charges for various resources occupied by providing services as revenue, the service efficiency and energy consumption as cost, thus formulates a Mixed Integer Programming(MIP) model to describe the optimal placement of CC on edge service nodes. Furthermore, an Actor-Critic based Deep Reinforcement Learning(DRL) incorporating Graph Convolutional Networks(GCN) framework named as RL-GCN is proposed to solve the optimization problem. The framework obtains an optimal placement strategy through self-learning according to the requirements and objectives of the placement of CC. Particularly, through the introduction of GCN, the features of the association relationship between multiple containers in CCs can be effectively extracted to improve the quality of placement.The experiment results show that under different scales of service nodes and task requests, the proposed method can obtain the improved system performance in terms of placement error ratio, time efficiency of solution output and cumulative system revenue compared with other representative baseline methods.展开更多
As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model...As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model that makes full use of the gate recurrent unit(GRU)algorithm.Based on the fragmentation prediction model,one virtual optical network mapping scheme is presented for edge computing driven EON.With the minimum of fragmentation degree all over the whole EON,the virtual network mapping can be successively conducted.Test results show that the proposed approach can reduce blocking rate,and the supporting ability for virtual optical network services is greatly improved.展开更多
Since virtualization technology enables the abstraction and sharing of resources in a flexible management way, the overall expenses of network deployment can be significantly reduced. Therefore, the technology has bee...Since virtualization technology enables the abstraction and sharing of resources in a flexible management way, the overall expenses of network deployment can be significantly reduced. Therefore, the technology has been widely applied in the core network. With the tremendous growth in mobile traffic and services, it is natural to extend virtualization technology to the cloud computing based radio access networks(CCRANs) for achieving high spectral efficiency with low cost.In this paper, the virtualization technologies in CC-RANs are surveyed, including the system architecture, key enabling techniques, challenges, and open issues. The enabling key technologies for virtualization in CC-RANs mainly including virtual resource allocation, radio access network(RAN) slicing, mobility management, and social-awareness have been comprehensively surveyed to satisfy the isolation, customization and high-efficiency utilization of radio resources. The challenges and open issues mainly focus on virtualization levels for CC-RANs, signaling design for CC-RAN virtualization, performance analysis for CC-RAN virtualization, and network security for virtualized CC-RANs.展开更多
5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and ...5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and network function virtualization (NFV) with ClickOS, have been a significant part of 5G, and this paper mainly discusses them. D2D enables direct communication between devices without the relay of base station. In 5G, a two-tier cellular network composed of traditional cellular network system and D2D is an efficient method for realizing high-speed communication. MEC unloads work from end devices and clouds platforms to widespread nodes, and connects the nodes together with outside devices and third-party providers, in order to diminish the overloading effect on any device caused by enormous applications and improve users’ quality of experience (QoE). There is also a NFV method in order to fulfill the 5G requirements. In this part, an optimized virtual machine for middle-boxes named ClickOS is introduced, and it is evaluated in several aspects. Some middle boxes are being implemented in the ClickOS and proved to have outstanding performances.展开更多
Cloud computing technology facilitates computing-intensive applications by providing virtualized resources which can be dynamically provisioned. However, user’s requests are varied according to different applications...Cloud computing technology facilitates computing-intensive applications by providing virtualized resources which can be dynamically provisioned. However, user’s requests are varied according to different applications’ computation ability needs. These applications can be presented as meta-job of user’s demand. The total processing time of these jobs may need data transmission time over the Internet as well as the completed time of jobs to execute on the virtual machine must be taken into account. In this paper, we presented V-heuristics scheduling algorithm for allocation of virtualized network and computing resources under user’s constraint which applied into a service-oriented resource broker for jobs scheduling. This scheduling algorithm takes into account both data transmission time and computation time that related to virtualized network and virtual machine. The simulation results are compared with three different types of heuristic algorithms under conventional network or virtual network conditions such as MCT, Min-Min and Max-Min. e evaluate these algorithms within a simulated cloud environment via an abilenenetwork topology which is real physical core network topology. These experimental results show that V-heuristic scheduling algorithm achieved significant performance gain for a variety of applications in terms of load balance, Makespan, average resource utilization and total processing time.展开更多
In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the V...In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the Virtual Machines(VMs)cannot be successfully launched due to the server overload.In addition,transferring the data from the AP to the remote DC may cause an undesirable delivery delay.For this end,we propose a promising solution considering the interplay between the cloud DC and edge APs.More specifically,bringing the partial capability of computing in APs close to things can reduce the pressure of DCs while guaranteeing the expected Quality of Service(QoS).In this work,when the cloud DC resource becomes limited,especially for delay sensitive but not computing-dependent IoT applications,we degrade their VMs and migrate them to edge APs instead of the remote DC.To avoid excessive VM degradation and computing offloading,we derive appropriate VM degradation coefficients based on classic microeconomic theory.Simulation results demonstrate that our algorithms improve the service providers'utility with the ratio from 34%to 89%over traditional cloud-centric solutions.展开更多
The swift expansion of cloud computing has heightened the demand for energy-efficient and high-performance resource allocation solutions across extensive systems.This research presents an innovative hybrid framework t...The swift expansion of cloud computing has heightened the demand for energy-efficient and high-performance resource allocation solutions across extensive systems.This research presents an innovative hybrid framework that combines a Quantum Tensor-based Deep Neural Network(QT-DNN)with Binary Bird Swarm Optimization(BBSO)to enhance resource allocation while preserving Quality of Service(QoS).In contrast to conventional approaches,the QT-DNN accurately predicts task-resource mappings using tensor-based task representation,significantly minimizing computing overhead.The BBSO allocates resources dynamically,optimizing energy efficiency and task distribution.Experimental results from extensive simulations indicate the efficacy of the suggested strategy;the proposed approach demonstrates the highest level of accuracy,reaching 98.1%.This surpasses the GA-SVM model,which achieves an accuracy of 96.3%,and the ART model,which achieves an accuracy of 95.4%.The proposed method performs better in terms of response time with 1.598 as compared to existing methods Energy-Focused Dynamic Task Scheduling(EFDTS)and Federated Energy-efficient Scheduler for Task Allocation in Large-scale environments(FESTAL)with 2.31 and 2.04,moreover,the proposed method performs better in terms of makespan with 12 as compared to Round Robin(RR)and Recurrent Attention-based Summarization Algorithm(RASA)with 20 and 14.The hybrid method establishes a new standard for sustainable and efficient administration of cloud computing resources by explicitly addressing scalability and real-time performance.展开更多
Virtual cloud network(VCN)usage is popular today among large and small organizations due to its safety and money-saving.Moreover,it makes all resources in the company work as one unit.VCN also facilitates sharing of f...Virtual cloud network(VCN)usage is popular today among large and small organizations due to its safety and money-saving.Moreover,it makes all resources in the company work as one unit.VCN also facilitates sharing of files and applications without effort.However,cloud providers face many issues in managing the VCN on cloud computing including these issues:Power consumption,network failures,and data availability.These issues often occur due to overloaded and unbalanced load tasks.In this paper,we propose a new automatic system to manage VCN for executing the workflow.The new system calledMulti-User Hybrid Scheduling(MUSH)can solve running issues and save power during workflow execution.It consists of three phases:Initialization,virtual machine allocation,and task scheduling algorithms.The MUSH system focuses on the execution of the workflow with deadline constraints.Moreover,it considers the utilization of virtual machines.The new system can save makespan and increase the throughput of the execution operation.展开更多
In this paper, the properties of distributed virtual environment (DVE) and the requirements on computer networks is briefly reviewed. A multicast protocol, called sender initiated grouping multicast protocol for DVE...In this paper, the properties of distributed virtual environment (DVE) and the requirements on computer networks is briefly reviewed. A multicast protocol, called sender initiated grouping multicast protocol for DVE (SIGMP), is proposed. This new multicast protocol is based on a novel concept, multicast group (MG), which divides all participants in a DVE system into groups, among which there is a multicast group trustee (MGT) node to manage the group. The protocol provides unreliable/reliable, totally ordered and multiple to multiple multicast transmission service for DVE systems without sacrificing the communication efficiency heavily. At the same time, reliable unicast and one to multiple multicast transmission services are also supported. The performance analysis of the new protocols is also presented. Based on SIGMP, a simple demonstration of DVE system is designed and implemented. This demo system is running on several SGI workstations connected by a FDDI and Ethernet network.展开更多
虚拟电厂(virtual power plant,VPP)在整合分布式能源(distributed energy resources,DER)方面有着巨大潜力,为促进电网资源的灵活管理和有效利用提供了一种高效的解决方案。为便于VPP参与系统调度,提出一种VPP内部灵活资源聚合运行边...虚拟电厂(virtual power plant,VPP)在整合分布式能源(distributed energy resources,DER)方面有着巨大潜力,为促进电网资源的灵活管理和有效利用提供了一种高效的解决方案。为便于VPP参与系统调度,提出一种VPP内部灵活资源聚合运行边界评估方法。首先,考虑DER有功和无功功率的运行约束,将其表示为统一的线性不等式形式;然后,通过几何计算方法将同一个配电网节点上的所有异构DER聚合为一个DER聚合体;最后,考虑网络约束,建立VPP运行边界评估模型,并采用边界点搜索的方法计算出运行边界。算例结果表明所提方法能够考虑功率耦合和时间耦合特性,有效地评估出VPP的多时间运行边界。展开更多
文摘Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilization efficiency. To meet the diverse needs of tasks, it usually needs to instantiate multiple network functions in the form of containers interconnect various generated containers to build a Container Cluster(CC). Then CCs will be deployed on edge service nodes with relatively limited resources. However, the increasingly complex and timevarying nature of tasks brings great challenges to optimal placement of CC. This paper regards the charges for various resources occupied by providing services as revenue, the service efficiency and energy consumption as cost, thus formulates a Mixed Integer Programming(MIP) model to describe the optimal placement of CC on edge service nodes. Furthermore, an Actor-Critic based Deep Reinforcement Learning(DRL) incorporating Graph Convolutional Networks(GCN) framework named as RL-GCN is proposed to solve the optimization problem. The framework obtains an optimal placement strategy through self-learning according to the requirements and objectives of the placement of CC. Particularly, through the introduction of GCN, the features of the association relationship between multiple containers in CCs can be effectively extracted to improve the quality of placement.The experiment results show that under different scales of service nodes and task requests, the proposed method can obtain the improved system performance in terms of placement error ratio, time efficiency of solution output and cumulative system revenue compared with other representative baseline methods.
基金Supported by the National Key Research and Development Program of China(No.2021YFB2401204)。
文摘As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model that makes full use of the gate recurrent unit(GRU)algorithm.Based on the fragmentation prediction model,one virtual optical network mapping scheme is presented for edge computing driven EON.With the minimum of fragmentation degree all over the whole EON,the virtual network mapping can be successively conducted.Test results show that the proposed approach can reduce blocking rate,and the supporting ability for virtual optical network services is greatly improved.
文摘Since virtualization technology enables the abstraction and sharing of resources in a flexible management way, the overall expenses of network deployment can be significantly reduced. Therefore, the technology has been widely applied in the core network. With the tremendous growth in mobile traffic and services, it is natural to extend virtualization technology to the cloud computing based radio access networks(CCRANs) for achieving high spectral efficiency with low cost.In this paper, the virtualization technologies in CC-RANs are surveyed, including the system architecture, key enabling techniques, challenges, and open issues. The enabling key technologies for virtualization in CC-RANs mainly including virtual resource allocation, radio access network(RAN) slicing, mobility management, and social-awareness have been comprehensively surveyed to satisfy the isolation, customization and high-efficiency utilization of radio resources. The challenges and open issues mainly focus on virtualization levels for CC-RANs, signaling design for CC-RAN virtualization, performance analysis for CC-RAN virtualization, and network security for virtualized CC-RANs.
文摘5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and network function virtualization (NFV) with ClickOS, have been a significant part of 5G, and this paper mainly discusses them. D2D enables direct communication between devices without the relay of base station. In 5G, a two-tier cellular network composed of traditional cellular network system and D2D is an efficient method for realizing high-speed communication. MEC unloads work from end devices and clouds platforms to widespread nodes, and connects the nodes together with outside devices and third-party providers, in order to diminish the overloading effect on any device caused by enormous applications and improve users’ quality of experience (QoE). There is also a NFV method in order to fulfill the 5G requirements. In this part, an optimized virtual machine for middle-boxes named ClickOS is introduced, and it is evaluated in several aspects. Some middle boxes are being implemented in the ClickOS and proved to have outstanding performances.
文摘Cloud computing technology facilitates computing-intensive applications by providing virtualized resources which can be dynamically provisioned. However, user’s requests are varied according to different applications’ computation ability needs. These applications can be presented as meta-job of user’s demand. The total processing time of these jobs may need data transmission time over the Internet as well as the completed time of jobs to execute on the virtual machine must be taken into account. In this paper, we presented V-heuristics scheduling algorithm for allocation of virtualized network and computing resources under user’s constraint which applied into a service-oriented resource broker for jobs scheduling. This scheduling algorithm takes into account both data transmission time and computation time that related to virtualized network and virtual machine. The simulation results are compared with three different types of heuristic algorithms under conventional network or virtual network conditions such as MCT, Min-Min and Max-Min. e evaluate these algorithms within a simulated cloud environment via an abilenenetwork topology which is real physical core network topology. These experimental results show that V-heuristic scheduling algorithm achieved significant performance gain for a variety of applications in terms of load balance, Makespan, average resource utilization and total processing time.
基金supported by the Researchers Supporting Project of King Saud University,Riyadh,Saudi Arabia,under Project RSPD2025R681。
文摘In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the Virtual Machines(VMs)cannot be successfully launched due to the server overload.In addition,transferring the data from the AP to the remote DC may cause an undesirable delivery delay.For this end,we propose a promising solution considering the interplay between the cloud DC and edge APs.More specifically,bringing the partial capability of computing in APs close to things can reduce the pressure of DCs while guaranteeing the expected Quality of Service(QoS).In this work,when the cloud DC resource becomes limited,especially for delay sensitive but not computing-dependent IoT applications,we degrade their VMs and migrate them to edge APs instead of the remote DC.To avoid excessive VM degradation and computing offloading,we derive appropriate VM degradation coefficients based on classic microeconomic theory.Simulation results demonstrate that our algorithms improve the service providers'utility with the ratio from 34%to 89%over traditional cloud-centric solutions.
文摘The swift expansion of cloud computing has heightened the demand for energy-efficient and high-performance resource allocation solutions across extensive systems.This research presents an innovative hybrid framework that combines a Quantum Tensor-based Deep Neural Network(QT-DNN)with Binary Bird Swarm Optimization(BBSO)to enhance resource allocation while preserving Quality of Service(QoS).In contrast to conventional approaches,the QT-DNN accurately predicts task-resource mappings using tensor-based task representation,significantly minimizing computing overhead.The BBSO allocates resources dynamically,optimizing energy efficiency and task distribution.Experimental results from extensive simulations indicate the efficacy of the suggested strategy;the proposed approach demonstrates the highest level of accuracy,reaching 98.1%.This surpasses the GA-SVM model,which achieves an accuracy of 96.3%,and the ART model,which achieves an accuracy of 95.4%.The proposed method performs better in terms of response time with 1.598 as compared to existing methods Energy-Focused Dynamic Task Scheduling(EFDTS)and Federated Energy-efficient Scheduler for Task Allocation in Large-scale environments(FESTAL)with 2.31 and 2.04,moreover,the proposed method performs better in terms of makespan with 12 as compared to Round Robin(RR)and Recurrent Attention-based Summarization Algorithm(RASA)with 20 and 14.The hybrid method establishes a new standard for sustainable and efficient administration of cloud computing resources by explicitly addressing scalability and real-time performance.
文摘Virtual cloud network(VCN)usage is popular today among large and small organizations due to its safety and money-saving.Moreover,it makes all resources in the company work as one unit.VCN also facilitates sharing of files and applications without effort.However,cloud providers face many issues in managing the VCN on cloud computing including these issues:Power consumption,network failures,and data availability.These issues often occur due to overloaded and unbalanced load tasks.In this paper,we propose a new automatic system to manage VCN for executing the workflow.The new system calledMulti-User Hybrid Scheduling(MUSH)can solve running issues and save power during workflow execution.It consists of three phases:Initialization,virtual machine allocation,and task scheduling algorithms.The MUSH system focuses on the execution of the workflow with deadline constraints.Moreover,it considers the utilization of virtual machines.The new system can save makespan and increase the throughput of the execution operation.
文摘In this paper, the properties of distributed virtual environment (DVE) and the requirements on computer networks is briefly reviewed. A multicast protocol, called sender initiated grouping multicast protocol for DVE (SIGMP), is proposed. This new multicast protocol is based on a novel concept, multicast group (MG), which divides all participants in a DVE system into groups, among which there is a multicast group trustee (MGT) node to manage the group. The protocol provides unreliable/reliable, totally ordered and multiple to multiple multicast transmission service for DVE systems without sacrificing the communication efficiency heavily. At the same time, reliable unicast and one to multiple multicast transmission services are also supported. The performance analysis of the new protocols is also presented. Based on SIGMP, a simple demonstration of DVE system is designed and implemented. This demo system is running on several SGI workstations connected by a FDDI and Ethernet network.
文摘虚拟电厂(virtual power plant,VPP)在整合分布式能源(distributed energy resources,DER)方面有着巨大潜力,为促进电网资源的灵活管理和有效利用提供了一种高效的解决方案。为便于VPP参与系统调度,提出一种VPP内部灵活资源聚合运行边界评估方法。首先,考虑DER有功和无功功率的运行约束,将其表示为统一的线性不等式形式;然后,通过几何计算方法将同一个配电网节点上的所有异构DER聚合为一个DER聚合体;最后,考虑网络约束,建立VPP运行边界评估模型,并采用边界点搜索的方法计算出运行边界。算例结果表明所提方法能够考虑功率耦合和时间耦合特性,有效地评估出VPP的多时间运行边界。