The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corros...The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys.展开更多
Early non-invasive diagnosis of coronary heart disease(CHD)is critical.However,it is challenging to achieve accurate CHD diagnosis via detecting breath.In this work,heterostructured complexes of black phosphorus(BP)an...Early non-invasive diagnosis of coronary heart disease(CHD)is critical.However,it is challenging to achieve accurate CHD diagnosis via detecting breath.In this work,heterostructured complexes of black phosphorus(BP)and two-dimensional carbide and nitride(MXene)with high gas sensitivity and photo responsiveness were formulated using a self-assembly strategy.A light-activated virtual sensor array(LAVSA)based on BP/Ti_(3)C_(2)Tx was prepared under photomodulation and further assembled into an instant gas sensing platform(IGSP).In addition,a machine learning(ML)algorithm was introduced to help the IGSP detect and recognize the signals of breath samples to diagnose CHD.Due to the synergistic effect of BP and Ti_(3)C_(2)Tx as well as photo excitation,the synthesized heterostructured complexes exhibited higher performance than pristine Ti_(3)C_(2)Tx,with a response value 26%higher than that of pristine Ti_(3)C_(2)Tx.In addition,with the help of a pattern recognition algorithm,LAVSA successfully detected and identified 15 odor molecules affiliated with alcohols,ketones,aldehydes,esters,and acids.Meanwhile,with the assistance of ML,the IGSP achieved 69.2%accuracy in detecting the breath odor of 45 volunteers from healthy people and CHD patients.In conclusion,an immediate,low-cost,and accurate prototype was designed and fabricated for the noninvasive diagnosis of CHD,which provided a generalized solution for diagnosing other diseases and other more complex application scenarios.展开更多
Background Virtual reality technology has been widely used in surgical simulators,providing new opportunities for assessing and training surgical skills.Machine learning algorithms are commonly used to analyze and eva...Background Virtual reality technology has been widely used in surgical simulators,providing new opportunities for assessing and training surgical skills.Machine learning algorithms are commonly used to analyze and evaluate the performance of participants.However,their interpretability limits the personalization of the training for individual participants.Methods Seventy-nine participants were recruited and divided into three groups based on their skill level in intracranial tumor resection.Data on the use of surgical tools were collected using a surgical simulator.Feature selection was performed using the Minimum Redundancy Maximum Relevance and SVM-RFE algorithms to obtain the final metrics for training the machine learning model.Five machine learning algorithms were trained to predict the skill level,and the support vector machine performed the best,with an accuracy of 92.41%and Area Under Curve value of 0.98253.The machine learning model was interpreted using Shapley values to identify the important factors contributing to the skill level of each participant.Results This study demonstrates the effectiveness of machine learning in differentiating the evaluation and training of virtual reality neurosurgical performances.The use of Shapley values enables targeted training by identifying deficiencies in individual skills.Conclusions This study provides insights into the use of machine learning for personalized training in virtual reality neurosurgery.The interpretability of the machine learning models enables the development of individualized training programs.In addition,this study highlighted the potential of explanatory models in training external skills.展开更多
In recent years,vehicular cloud computing(VCC)has gained vast attention for providing a variety of services by creating virtual machines(VMs).These VMs use the resources that are present in modern smart vehicles.Many ...In recent years,vehicular cloud computing(VCC)has gained vast attention for providing a variety of services by creating virtual machines(VMs).These VMs use the resources that are present in modern smart vehicles.Many studies reported that some of these VMs hosted on the vehicles are overloaded,whereas others are underloaded.As a circumstance,the energy consumption of overloaded vehicles is drastically increased.On the other hand,underloaded vehicles are also drawing considerable energy in the underutilized situation.Therefore,minimizing the energy consumption of the VMs that are hosted by both overloaded and underloaded is a challenging issue in the VCC environment.The proper and efcient utilization of the vehicle’s resources can reduce energy consumption signicantly.One of the solutions is to improve the resource utilization of underloaded vehicles by migrating the over-utilized VMs of overloaded vehicles.On the other hand,a large number of VM migrations can lead to wastage of energy and time,which ultimately degrades the performance of the VMs.This paper addresses the issues mentioned above by introducing a resource management algorithm,called resource utilization-aware VM migration(RU-VMM)algorithm,to distribute the loads among the overloaded and underloaded vehicles,such that energy consumption is minimized.RU-VMM monitors the trend of resource utilization to select the source and destination vehicles within a predetermined threshold for the process of VM migration.It ensures that any vehicles’resource utilization should not exceed the threshold before or after the migration.RU-VMM also tries to avoid unnecessary VM migrations between the vehicles.RU-VMM is extensively simulated and tested using nine datasets.The results are carried out using three performance metrics,namely number of nal source vehicles(nfsv),percentage of successful VM migrations(psvmm)and percentage of dropped VM migrations(pdvmm),and compared with threshold-based algorithm(i.e.,threshold)and cumulative sum(CUSUM)algorithm.The comparisons show that the RU-VMM algorithm performs better than the existing algorithms.RU-VMM algorithm improves 16.91%than the CUSUM algorithm and 71.59%than the threshold algorithm in terms of nfsv,and 20.62%and 275.34%than the CUSUM and threshold algorithms in terms of psvmm.展开更多
Quantitative security metrics are desirable for measuring the performance of information security controls. Security metrics help to make functional and business decisions for improving the performance and cost of the...Quantitative security metrics are desirable for measuring the performance of information security controls. Security metrics help to make functional and business decisions for improving the performance and cost of the security controls. However, defining enterprise-level security metrics has already been listed as one of the hard problems in the Info Sec Research Council's hard problems list. Almost all the efforts in defining absolute security metrics for the enterprise security have not been proved fruitful. At the same time, with the maturity of the security industry, there has been a continuous emphasis from the regulatory bodies on establishing measurable security metrics. This paper addresses this need and proposes a relative security metric model that derives three quantitative security metrics named Attack Resiliency Measure(ARM), Performance Improvement Factor(PIF), and Cost/Benefit Measure(CBM) for measuring the performance of the security controls. For the effectiveness evaluation of the proposed security metrics, we took the secure virtual machine(VM) migration protocol as the target of assessment. The virtual-ization technologies are rapidly changing the landscape of the computing world. Devising security metrics for virtualized environment is even more challenging. As secure virtual machine migration is an evolving area and no standard protocol is available specifically for secure VM migration. This paper took the secure virtual machine migration protocol as the target of assessment and applied the proposed relative security metric model for measuring the Attack Resiliency Measure, Performance Improvement Factor, and Cost/Benefit Measure of the secure VM migration protocol.展开更多
As the number of Virtual Machines(VMs) consolidated on single physical server increases with the rapid advance of server hardware,virtual network turns complex and frangible.Modern Network Security Engines(NSE) are in...As the number of Virtual Machines(VMs) consolidated on single physical server increases with the rapid advance of server hardware,virtual network turns complex and frangible.Modern Network Security Engines(NSE) are introduced to eradicate the intrusions occurring in the virtual network.In this paper,we point out the inadequacy of the present live migration implementation,which hinders itself from providing transparent VM relocation between hypervisors equipped with Network Security Engines(NSE-H).This occurs because the current implementation ignores VM-related Security Context(SC) required by NSEs embedded in NSE-H.We present the CoM,a comprehensive live migration framework,for NSE-H-based virtualization computing environment.We built a prototype system on Xen hypervisors to evaluate our framework,and conduct experiments under various realistic application environments.The results demonstrate that our solution successfully fixes the inadequacy of the present live migration implementation,and the performance overhead is negligible.展开更多
Cloud computing has emerged as a vital platform for processing resource-intensive workloads in smart manu-facturing environments,enabling scalable and flexible access to remote data centers over the internet.In these ...Cloud computing has emerged as a vital platform for processing resource-intensive workloads in smart manu-facturing environments,enabling scalable and flexible access to remote data centers over the internet.In these environments,Virtual Machines(VMs)are employed to manage workloads,with their optimal placement on Physical Machines(PMs)being crucial for maximizing resource utilization.However,achieving high resource utilization in cloud data centers remains a challenge due to multiple conflicting objectives,particularly in scenarios involving inter-VM communication dependencies,which are common in smart manufacturing applications.This manuscript presents an AI-driven approach utilizing a modified Multi-Objective Particle Swarm Optimization(MOPSO)algorithm,enhanced with improved mutation and crossover operators,to efficiently place VMs.This approach aims to minimize the impact on networking devices during inter-VM communication while enhancing resource utilization.The proposed algorithm is benchmarked against other multi-objective algorithms,such as Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),demonstrating its superiority in optimizing resource allocation in cloud-based environments for smart manufacturing.展开更多
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications...In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks.展开更多
Compared with traditional feedback control,predictive control can eliminate the lag of pose control and avoid the snakelike motion of shield machines.Therefore,a shield pose prediction model was proposed based on dyna...Compared with traditional feedback control,predictive control can eliminate the lag of pose control and avoid the snakelike motion of shield machines.Therefore,a shield pose prediction model was proposed based on dynamic modeling.Firstly,the dynamic equations of shield thrust system were established to clarify the relationship between force and movement of shield machine.Secondly,an analytical model was proposed to predict future multistep pose of the shield machine.Finally,a virtual prototype model was developed to simulate the dynamic behavior of the shield machine and validate the accuracy of the proposed pose prediction method.Results reveal that the model proposed can predict the shield pose with high accuracy,which can provide a decision basis whether for manual or automatic control of shield pose.展开更多
Virtual human is the simulation of human under the synthesis of virtual reality,artificial intelligence,and other technologies.Modern virtual human technology simulates both the external characteristics and the intern...Virtual human is the simulation of human under the synthesis of virtual reality,artificial intelligence,and other technologies.Modern virtual human technology simulates both the external characteristics and the internal emotions and personality of humans.The relationship between virtual human and human is a concrete expression of the modern symbiotic relationship between human and machine.This human-machine symbiosis can either be a fusion of the virtual human and the human or it can cause a split in the human itself.展开更多
The demand for cloud computing has increased manifold in the recent past.More specifically,on-demand computing has seen a rapid rise as organizations rely mostly on cloud service providers for their day-to-day computi...The demand for cloud computing has increased manifold in the recent past.More specifically,on-demand computing has seen a rapid rise as organizations rely mostly on cloud service providers for their day-to-day computing needs.The cloud service provider fulfills different user requirements using virtualization-where a single physical machine can host multiple VirtualMachines.Each virtualmachine potentially represents a different user environment such as operating system,programming environment,and applications.However,these cloud services use a large amount of electrical energy and produce greenhouse gases.To reduce the electricity cost and greenhouse gases,energy efficient algorithms must be designed.One specific area where energy efficient algorithms are required is virtual machine consolidation.With virtualmachine consolidation,the objective is to utilize the minimumpossible number of hosts to accommodate the required virtual machines,keeping in mind the service level agreement requirements.This research work formulates the virtual machine migration as an online problem and develops optimal offline and online algorithms for the single host virtual machine migration problem under a service level agreement constraint for an over-utilized host.The online algorithm is analyzed using a competitive analysis approach.In addition,an experimental analysis of the proposed algorithm on real-world data is conducted to showcase the improved performance of the proposed algorithm against the benchmark algorithms.Our proposed online algorithm consumed 25%less energy and performed 43%fewer migrations than the benchmark algorithms.展开更多
Cloud Computing provides various services to the customer in aflex-ible and reliable manner.Virtual Machines(VM)are created from physical resources of the data center for handling huge number of requests as a task.Thes...Cloud Computing provides various services to the customer in aflex-ible and reliable manner.Virtual Machines(VM)are created from physical resources of the data center for handling huge number of requests as a task.These tasks are executed in the VM at the data center which needs excess hosts for satis-fying the customer request.The VM migration solves this problem by migrating the VM from one host to another host and makes the resources available at any time.This process is carried out based on various algorithms which follow a pre-defined capacity of source VM leads to the capacity issue at the destination VM.The proposed VM migration technique performs the migration process based on the request of the requesting host machine.This technique can perform in three ways namely single VM migration,Multiple VM migration and Cluster VM migration.Common Deployment Manager(CDM)is used to support through negotiation that happens across the source host and destination host for providing the high quality service to their customer.The VM migration requests are handled with an exposure of the source host capabilities.The proposed analysis also uses the retired instructions with execution by the hypervisor to achieve high reliabil-ity.The objective of the proposed technique is to perform a VM migration process based on the prior knowledge of the resource availability in the target VM.展开更多
Cloud computing promises the advent of a new era of service boosted by means of virtualization technology.The process of virtualization means creation of virtual infrastructure,devices,servers and computing resources ...Cloud computing promises the advent of a new era of service boosted by means of virtualization technology.The process of virtualization means creation of virtual infrastructure,devices,servers and computing resources needed to deploy an application smoothly.This extensively practiced technology involves selecting an efficient Virtual Machine(VM)to complete the task by transferring applications from Physical Machines(PM)to VM or from VM to VM.The whole process is very challenging not only in terms of computation but also in terms of energy and memory.This research paper presents an energy aware VM allocation and migration approach to meet the challenges faced by the growing number of cloud data centres.Machine Learning(ML)based Artificial Bee Colony(ABC)is used to rank the VM with respect to the load while considering the energy efficiency as a crucial parameter.The most efficient virtual machines are further selected and thus depending on the dynamics of the load and energy,applications are migrated fromoneVMto another.The simulation analysis is performed inMatlab and it shows that this research work results in more reduction in energy consumption as compared to existing studies.展开更多
Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-...Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-based VM deployment algorithm for energy efficiency) is presented. The proposed algorithm uses linear weighted method to predict the load of a host and classifies the hosts in the data center, based on the predicted host load, into four classes for the purpose of VMs migration. We also propose four types of VM selection algorithms for the purpose of determining potential VMs to be migrated. We performed extensive performance analysis of the proposed algorithms. Experimental results show that, in contrast to other energy-saving algorithms, the algorithm proposed in this work significantly reduces the energy consumption and maintains low service level agreement(SLA) violations.展开更多
This paper interprets the essence of XEN and hardware virtualization technology, which make the virtual machine technology become the focus of people's attention again because of its impressive performance. The secur...This paper interprets the essence of XEN and hardware virtualization technology, which make the virtual machine technology become the focus of people's attention again because of its impressive performance. The security challenges of XEN are mainly researched from the pointes of view: security bottleneck, security isolation and share, life-cycle, digital copyright protection, trusted virtual machine and managements, etc. These security problems significantly affect the security of the virtual machine system based on XEN. At the last, these security measures are put forward, which will be a useful instruction on enhancing XEN security in the future.展开更多
Finding energetic materials with tailored properties is always a significant challenge due to low research efficiency in trial and error.Herein,a methodology combining domain knowledge,a machine learning algorithm,and...Finding energetic materials with tailored properties is always a significant challenge due to low research efficiency in trial and error.Herein,a methodology combining domain knowledge,a machine learning algorithm,and experiments is presented for accelerating the discovery of novel energetic materials.A high-throughput virtual screening(HTVS)system integrating on-demand molecular generation and machine learning models covering the prediction of molecular properties and crystal packing mode scoring is established.With the proposed HTVS system,candidate molecules with promising properties and a desirable crystal packing mode are rapidly targeted from the generated molecular space containing 25112 molecules.Furthermore,a study of the crystal structure and properties shows that the good comprehensive performances of the target molecule are in agreement with the predicted results,thus verifying the effectiveness of the proposed methodology.This work demonstrates a new research paradigm for discovering novel energetic materials and can be extended to other organic materials without manifest obstacles.展开更多
Seismic reservoir prediction plays an important role in oil exploration and development.With the progress of artificial intelligence,many achievements have been made in machine learning seismic reservoir prediction.Ho...Seismic reservoir prediction plays an important role in oil exploration and development.With the progress of artificial intelligence,many achievements have been made in machine learning seismic reservoir prediction.However,due to the factors such as economic cost,exploration maturity,and technical limitations,it is often difficult to obtain a large number of training samples for machine learning.In this case,the prediction accuracy cannot meet the requirements.To overcome this shortcoming,we develop a new machine learning reservoir prediction method based on virtual sample generation.In this method,the virtual samples,which are generated in a high-dimensional hypersphere space,are more consistent with the original data characteristics.Furthermore,at the stage of model building after virtual sample generation,virtual samples screening and model iterative optimization are used to eliminate noise samples and ensure the rationality of virtual samples.The proposed method has been applied to standard function data and real seismic data.The results show that this method can improve the prediction accuracy of machine learning significantly.展开更多
Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principle...Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principles of the model were presented to guarantee the correctness and efficiency for process transformation.As a case study,the EPEM descriptions of Web Services Business Process Execution Language(WS-BPEL) were represented and a Process Virtual Machine(PVM)-OncePVM was implemented in compliance with the EPEM.展开更多
文摘The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys.
基金supported by the National Natural Science Foundation of China(22278241)the National Key R&D Program of China(2018YFA0901700)+1 种基金a grant from the Institute Guo Qiang,Tsinghua University(2021GQG1016)Department of Chemical Engineering-iBHE Joint Cooperation Fund.
文摘Early non-invasive diagnosis of coronary heart disease(CHD)is critical.However,it is challenging to achieve accurate CHD diagnosis via detecting breath.In this work,heterostructured complexes of black phosphorus(BP)and two-dimensional carbide and nitride(MXene)with high gas sensitivity and photo responsiveness were formulated using a self-assembly strategy.A light-activated virtual sensor array(LAVSA)based on BP/Ti_(3)C_(2)Tx was prepared under photomodulation and further assembled into an instant gas sensing platform(IGSP).In addition,a machine learning(ML)algorithm was introduced to help the IGSP detect and recognize the signals of breath samples to diagnose CHD.Due to the synergistic effect of BP and Ti_(3)C_(2)Tx as well as photo excitation,the synthesized heterostructured complexes exhibited higher performance than pristine Ti_(3)C_(2)Tx,with a response value 26%higher than that of pristine Ti_(3)C_(2)Tx.In addition,with the help of a pattern recognition algorithm,LAVSA successfully detected and identified 15 odor molecules affiliated with alcohols,ketones,aldehydes,esters,and acids.Meanwhile,with the assistance of ML,the IGSP achieved 69.2%accuracy in detecting the breath odor of 45 volunteers from healthy people and CHD patients.In conclusion,an immediate,low-cost,and accurate prototype was designed and fabricated for the noninvasive diagnosis of CHD,which provided a generalized solution for diagnosing other diseases and other more complex application scenarios.
基金Supported by the Yunnan Key Laboratory of Opto-Electronic Information Technology,Postgraduate Research Innovation Fund of Yunnan Normal University (YJSJJ22-B79)the National Natural Science Foundation of China (62062069,62062070,62005235)。
文摘Background Virtual reality technology has been widely used in surgical simulators,providing new opportunities for assessing and training surgical skills.Machine learning algorithms are commonly used to analyze and evaluate the performance of participants.However,their interpretability limits the personalization of the training for individual participants.Methods Seventy-nine participants were recruited and divided into three groups based on their skill level in intracranial tumor resection.Data on the use of surgical tools were collected using a surgical simulator.Feature selection was performed using the Minimum Redundancy Maximum Relevance and SVM-RFE algorithms to obtain the final metrics for training the machine learning model.Five machine learning algorithms were trained to predict the skill level,and the support vector machine performed the best,with an accuracy of 92.41%and Area Under Curve value of 0.98253.The machine learning model was interpreted using Shapley values to identify the important factors contributing to the skill level of each participant.Results This study demonstrates the effectiveness of machine learning in differentiating the evaluation and training of virtual reality neurosurgical performances.The use of Shapley values enables targeted training by identifying deficiencies in individual skills.Conclusions This study provides insights into the use of machine learning for personalized training in virtual reality neurosurgery.The interpretability of the machine learning models enables the development of individualized training programs.In addition,this study highlighted the potential of explanatory models in training external skills.
文摘In recent years,vehicular cloud computing(VCC)has gained vast attention for providing a variety of services by creating virtual machines(VMs).These VMs use the resources that are present in modern smart vehicles.Many studies reported that some of these VMs hosted on the vehicles are overloaded,whereas others are underloaded.As a circumstance,the energy consumption of overloaded vehicles is drastically increased.On the other hand,underloaded vehicles are also drawing considerable energy in the underutilized situation.Therefore,minimizing the energy consumption of the VMs that are hosted by both overloaded and underloaded is a challenging issue in the VCC environment.The proper and efcient utilization of the vehicle’s resources can reduce energy consumption signicantly.One of the solutions is to improve the resource utilization of underloaded vehicles by migrating the over-utilized VMs of overloaded vehicles.On the other hand,a large number of VM migrations can lead to wastage of energy and time,which ultimately degrades the performance of the VMs.This paper addresses the issues mentioned above by introducing a resource management algorithm,called resource utilization-aware VM migration(RU-VMM)algorithm,to distribute the loads among the overloaded and underloaded vehicles,such that energy consumption is minimized.RU-VMM monitors the trend of resource utilization to select the source and destination vehicles within a predetermined threshold for the process of VM migration.It ensures that any vehicles’resource utilization should not exceed the threshold before or after the migration.RU-VMM also tries to avoid unnecessary VM migrations between the vehicles.RU-VMM is extensively simulated and tested using nine datasets.The results are carried out using three performance metrics,namely number of nal source vehicles(nfsv),percentage of successful VM migrations(psvmm)and percentage of dropped VM migrations(pdvmm),and compared with threshold-based algorithm(i.e.,threshold)and cumulative sum(CUSUM)algorithm.The comparisons show that the RU-VMM algorithm performs better than the existing algorithms.RU-VMM algorithm improves 16.91%than the CUSUM algorithm and 71.59%than the threshold algorithm in terms of nfsv,and 20.62%and 275.34%than the CUSUM and threshold algorithms in terms of psvmm.
文摘Quantitative security metrics are desirable for measuring the performance of information security controls. Security metrics help to make functional and business decisions for improving the performance and cost of the security controls. However, defining enterprise-level security metrics has already been listed as one of the hard problems in the Info Sec Research Council's hard problems list. Almost all the efforts in defining absolute security metrics for the enterprise security have not been proved fruitful. At the same time, with the maturity of the security industry, there has been a continuous emphasis from the regulatory bodies on establishing measurable security metrics. This paper addresses this need and proposes a relative security metric model that derives three quantitative security metrics named Attack Resiliency Measure(ARM), Performance Improvement Factor(PIF), and Cost/Benefit Measure(CBM) for measuring the performance of the security controls. For the effectiveness evaluation of the proposed security metrics, we took the secure virtual machine(VM) migration protocol as the target of assessment. The virtual-ization technologies are rapidly changing the landscape of the computing world. Devising security metrics for virtualized environment is even more challenging. As secure virtual machine migration is an evolving area and no standard protocol is available specifically for secure VM migration. This paper took the secure virtual machine migration protocol as the target of assessment and applied the proposed relative security metric model for measuring the Attack Resiliency Measure, Performance Improvement Factor, and Cost/Benefit Measure of the secure VM migration protocol.
基金supported by State Key Laboratory of Software Development Environment under Grant No. SKLSDE-2009ZX-02China Aviation Science Fund under Grant No.20081951National High Technical Research and Development Program of China (863 Program) under Grant No.2007AA01Z183
文摘As the number of Virtual Machines(VMs) consolidated on single physical server increases with the rapid advance of server hardware,virtual network turns complex and frangible.Modern Network Security Engines(NSE) are introduced to eradicate the intrusions occurring in the virtual network.In this paper,we point out the inadequacy of the present live migration implementation,which hinders itself from providing transparent VM relocation between hypervisors equipped with Network Security Engines(NSE-H).This occurs because the current implementation ignores VM-related Security Context(SC) required by NSEs embedded in NSE-H.We present the CoM,a comprehensive live migration framework,for NSE-H-based virtualization computing environment.We built a prototype system on Xen hypervisors to evaluate our framework,and conduct experiments under various realistic application environments.The results demonstrate that our solution successfully fixes the inadequacy of the present live migration implementation,and the performance overhead is negligible.
基金funded by Researchers Supporting Project Number(RSPD2025R 947),King Saud University,Riyadh,Saudi Arabia.
文摘Cloud computing has emerged as a vital platform for processing resource-intensive workloads in smart manu-facturing environments,enabling scalable and flexible access to remote data centers over the internet.In these environments,Virtual Machines(VMs)are employed to manage workloads,with their optimal placement on Physical Machines(PMs)being crucial for maximizing resource utilization.However,achieving high resource utilization in cloud data centers remains a challenge due to multiple conflicting objectives,particularly in scenarios involving inter-VM communication dependencies,which are common in smart manufacturing applications.This manuscript presents an AI-driven approach utilizing a modified Multi-Objective Particle Swarm Optimization(MOPSO)algorithm,enhanced with improved mutation and crossover operators,to efficiently place VMs.This approach aims to minimize the impact on networking devices during inter-VM communication while enhancing resource utilization.The proposed algorithm is benchmarked against other multi-objective algorithms,such as Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),demonstrating its superiority in optimizing resource allocation in cloud-based environments for smart manufacturing.
基金This work was supported in part by the National Science and Technology Council of Taiwan,under Contract NSTC 112-2410-H-324-001-MY2.
文摘In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks.
基金Project(2023JBZY030)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(U1834208)supported by the National Natural Science Foundation of China。
文摘Compared with traditional feedback control,predictive control can eliminate the lag of pose control and avoid the snakelike motion of shield machines.Therefore,a shield pose prediction model was proposed based on dynamic modeling.Firstly,the dynamic equations of shield thrust system were established to clarify the relationship between force and movement of shield machine.Secondly,an analytical model was proposed to predict future multistep pose of the shield machine.Finally,a virtual prototype model was developed to simulate the dynamic behavior of the shield machine and validate the accuracy of the proposed pose prediction method.Results reveal that the model proposed can predict the shield pose with high accuracy,which can provide a decision basis whether for manual or automatic control of shield pose.
文摘Virtual human is the simulation of human under the synthesis of virtual reality,artificial intelligence,and other technologies.Modern virtual human technology simulates both the external characteristics and the internal emotions and personality of humans.The relationship between virtual human and human is a concrete expression of the modern symbiotic relationship between human and machine.This human-machine symbiosis can either be a fusion of the virtual human and the human or it can cause a split in the human itself.
文摘The demand for cloud computing has increased manifold in the recent past.More specifically,on-demand computing has seen a rapid rise as organizations rely mostly on cloud service providers for their day-to-day computing needs.The cloud service provider fulfills different user requirements using virtualization-where a single physical machine can host multiple VirtualMachines.Each virtualmachine potentially represents a different user environment such as operating system,programming environment,and applications.However,these cloud services use a large amount of electrical energy and produce greenhouse gases.To reduce the electricity cost and greenhouse gases,energy efficient algorithms must be designed.One specific area where energy efficient algorithms are required is virtual machine consolidation.With virtualmachine consolidation,the objective is to utilize the minimumpossible number of hosts to accommodate the required virtual machines,keeping in mind the service level agreement requirements.This research work formulates the virtual machine migration as an online problem and develops optimal offline and online algorithms for the single host virtual machine migration problem under a service level agreement constraint for an over-utilized host.The online algorithm is analyzed using a competitive analysis approach.In addition,an experimental analysis of the proposed algorithm on real-world data is conducted to showcase the improved performance of the proposed algorithm against the benchmark algorithms.Our proposed online algorithm consumed 25%less energy and performed 43%fewer migrations than the benchmark algorithms.
文摘Cloud Computing provides various services to the customer in aflex-ible and reliable manner.Virtual Machines(VM)are created from physical resources of the data center for handling huge number of requests as a task.These tasks are executed in the VM at the data center which needs excess hosts for satis-fying the customer request.The VM migration solves this problem by migrating the VM from one host to another host and makes the resources available at any time.This process is carried out based on various algorithms which follow a pre-defined capacity of source VM leads to the capacity issue at the destination VM.The proposed VM migration technique performs the migration process based on the request of the requesting host machine.This technique can perform in three ways namely single VM migration,Multiple VM migration and Cluster VM migration.Common Deployment Manager(CDM)is used to support through negotiation that happens across the source host and destination host for providing the high quality service to their customer.The VM migration requests are handled with an exposure of the source host capabilities.The proposed analysis also uses the retired instructions with execution by the hypervisor to achieve high reliabil-ity.The objective of the proposed technique is to perform a VM migration process based on the prior knowledge of the resource availability in the target VM.
文摘Cloud computing promises the advent of a new era of service boosted by means of virtualization technology.The process of virtualization means creation of virtual infrastructure,devices,servers and computing resources needed to deploy an application smoothly.This extensively practiced technology involves selecting an efficient Virtual Machine(VM)to complete the task by transferring applications from Physical Machines(PM)to VM or from VM to VM.The whole process is very challenging not only in terms of computation but also in terms of energy and memory.This research paper presents an energy aware VM allocation and migration approach to meet the challenges faced by the growing number of cloud data centres.Machine Learning(ML)based Artificial Bee Colony(ABC)is used to rank the VM with respect to the load while considering the energy efficiency as a crucial parameter.The most efficient virtual machines are further selected and thus depending on the dynamics of the load and energy,applications are migrated fromoneVMto another.The simulation analysis is performed inMatlab and it shows that this research work results in more reduction in energy consumption as compared to existing studies.
基金Projects(61572525,61272148)supported by the National Natural Science Foundation of ChinaProject(20120162110061)supported by the PhD Programs Foundation of Ministry of Education of China+1 种基金Project(CX2014B066)supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2014zzts044)supported by the Fundamental Research Funds for the Central Universities,China
文摘Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-based VM deployment algorithm for energy efficiency) is presented. The proposed algorithm uses linear weighted method to predict the load of a host and classifies the hosts in the data center, based on the predicted host load, into four classes for the purpose of VMs migration. We also propose four types of VM selection algorithms for the purpose of determining potential VMs to be migrated. We performed extensive performance analysis of the proposed algorithms. Experimental results show that, in contrast to other energy-saving algorithms, the algorithm proposed in this work significantly reduces the energy consumption and maintains low service level agreement(SLA) violations.
基金Supported by the National Natural Science Foundation of China (90104005, 60373087, 60473023) and Network and Information Security Key Laboratory Program of Ministry of Education of China
文摘This paper interprets the essence of XEN and hardware virtualization technology, which make the virtual machine technology become the focus of people's attention again because of its impressive performance. The security challenges of XEN are mainly researched from the pointes of view: security bottleneck, security isolation and share, life-cycle, digital copyright protection, trusted virtual machine and managements, etc. These security problems significantly affect the security of the virtual machine system based on XEN. At the last, these security measures are put forward, which will be a useful instruction on enhancing XEN security in the future.
基金the Science Challenge Project(TZ2018004)the National Natural Science Foundation of China(21875228 and 21702195)for financial support。
文摘Finding energetic materials with tailored properties is always a significant challenge due to low research efficiency in trial and error.Herein,a methodology combining domain knowledge,a machine learning algorithm,and experiments is presented for accelerating the discovery of novel energetic materials.A high-throughput virtual screening(HTVS)system integrating on-demand molecular generation and machine learning models covering the prediction of molecular properties and crystal packing mode scoring is established.With the proposed HTVS system,candidate molecules with promising properties and a desirable crystal packing mode are rapidly targeted from the generated molecular space containing 25112 molecules.Furthermore,a study of the crystal structure and properties shows that the good comprehensive performances of the target molecule are in agreement with the predicted results,thus verifying the effectiveness of the proposed methodology.This work demonstrates a new research paradigm for discovering novel energetic materials and can be extended to other organic materials without manifest obstacles.
基金supported by National Natural Science Foundation of China under Grants 41874146 and 42030103。
文摘Seismic reservoir prediction plays an important role in oil exploration and development.With the progress of artificial intelligence,many achievements have been made in machine learning seismic reservoir prediction.However,due to the factors such as economic cost,exploration maturity,and technical limitations,it is often difficult to obtain a large number of training samples for machine learning.In this case,the prediction accuracy cannot meet the requirements.To overcome this shortcoming,we develop a new machine learning reservoir prediction method based on virtual sample generation.In this method,the virtual samples,which are generated in a high-dimensional hypersphere space,are more consistent with the original data characteristics.Furthermore,at the stage of model building after virtual sample generation,virtual samples screening and model iterative optimization are used to eliminate noise samples and ensure the rationality of virtual samples.The proposed method has been applied to standard function data and real seismic data.The results show that this method can improve the prediction accuracy of machine learning significantly.
文摘Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principles of the model were presented to guarantee the correctness and efficiency for process transformation.As a case study,the EPEM descriptions of Web Services Business Process Execution Language(WS-BPEL) were represented and a Process Virtual Machine(PVM)-OncePVM was implemented in compliance with the EPEM.