Virtual data center is a new form of cloud computing concept applied to data center. As one of the most important challenges, virtual data center embedding problem has attracted much attention from researchers. In dat...Virtual data center is a new form of cloud computing concept applied to data center. As one of the most important challenges, virtual data center embedding problem has attracted much attention from researchers. In data centers, energy issue is very important for the reality that data center energy consumption has increased by dozens of times in the last decade. In this paper, we are concerned about the cost-aware multi-domain virtual data center embedding problem. In order to solve this problem, this paper first addresses the energy consumption model. The model includes the energy consumption model of the virtual machine node and the virtual switch node, to quantify the energy consumption in the virtual data center embedding process. Based on the energy consumption model above, this paper presents a heuristic algorithm for cost-aware multi-domain virtual data center embedding. The algorithm consists of two steps: inter-domain embedding and intra-domain embedding. Inter-domain virtual data center embedding refers to dividing virtual data center requests into several slices to select the appropriate single data center. Intra-domain virtual data center refers to embedding virtual data center requests in each data center. We first propose an inter-domain virtual data center embedding algorithm based on label propagation to select the appropriate single data center. We then propose a cost-aware virtual data center embedding algorithm to perform the intra-domain data center embedding. Extensive simulation results show that our proposed algorithm in this paper can effectively reduce the energy consumption while ensuring the success ratio of embedding.展开更多
Virtualization is a common technology for resource sharing in data center. To make efficient use of data center resources, the key challenge is to map customer demands (modeled as virtual data center, VDC) to the ph...Virtualization is a common technology for resource sharing in data center. To make efficient use of data center resources, the key challenge is to map customer demands (modeled as virtual data center, VDC) to the physical data center effectively. In this paper, we focus on this problem. Distinct with previous works, our study of VDC embedding problem is under the assumption that switch resource is the bottleneck of data center networks (DCNs). To this end, we not only propose relative cost to evaluate embedding strategy, decouple embedding problem into VM placement with marginal resource assignment and virtual link mapping with decided source-destination based on the property of fat-tree, but also design the traffic aware embedding algorithm (TAE) and first fit virtual link mapping (FFLM) to map virtual data center requests to a physical data center. Simulation results show that TAE+FFLM could increase acceptance rate and reduce network cost (about 49% in the case) at the same time. The traffie aware embedding algorithm reduces the load of core-link traffic and brings the optimization opportunity for data center network energy conservation.展开更多
Resource Scheduling is crucial to data centers. However, most previous works focus only on one-dimensional resource models which ignoring the fact that multiple resources simultaneously utilized, including CPU, memory...Resource Scheduling is crucial to data centers. However, most previous works focus only on one-dimensional resource models which ignoring the fact that multiple resources simultaneously utilized, including CPU, memory and network bandwidth. As cloud computing allows uncoordinated and heterogeneous users to share a data center, competition for multiple resources has become increasingly severe. Motivated by the differences on integrated utilization obtained from different packing schemes, in this paper we take the scheduling problem as a multi-dimensional combinatorial optimization problem with constraint satisfaction. With NP hardness, we present Multiple attribute decision based Integrated Resource Scheduling (MIRS), and a novel heuristic algorithm to gain the approximate optimal solution. Refers to simulation results, in face of various workload sets, our algorithm has significant superiorities in terms of efficiency and performance compared with previous methods.展开更多
1 Introduction The history of data centers can be traced back to the 1960s. Early data centers were deployed on main- frames that were time-shared by users via remote terminals. The boom in data centers came duringthe...1 Introduction The history of data centers can be traced back to the 1960s. Early data centers were deployed on main- frames that were time-shared by users via remote terminals. The boom in data centers came duringthe internet era. Many companies started building large inter- net-connected facililies,展开更多
Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume m...Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume more energy but also produce greenhouse gases. Because of large amount of power consumption, data center providers go for different types of power generator to increase the profit margin which indirectly affects the environment. Several studies are carried out to reduce the power consumption of a data center. One of the techniques to reduce power consumption is virtualization. After several studies, it is stated that hardware plays a very important role. As the load increases, the power consumption of the CPU is also increased. Therefore, by extending the study of virtualization to reduce the power consumption, a hardware-based algorithm for virtual machine provisioning in a private cloud can significantly improve the performance by considering hardware as one of the important factors.展开更多
Server virtualization is an essential component in virtualized software infrastructure such as cloud computing. Virtual machines are generated through a software called virtual machine monitor (VMM) running on physica...Server virtualization is an essential component in virtualized software infrastructure such as cloud computing. Virtual machines are generated through a software called virtual machine monitor (VMM) running on physical servers. The risks of software aging caused by aging-related bugs affect both VM and VMM. As a result, service reliability degrades may generate huge financial losses to companies. This paper presents an analytic model using stochastic reward nets for time-based rejuvenation techniques of VMM and VM. We propose to manipulate the VM behavior while the VMM rejuvenation is according to the load on the system. Using a previous Petri net model of virtualized server, we performed an algorithm in order to optimize rejuvenation technique and achieve high availability. So we perform Migrate-VM rejuvenation or Warm-VM rejuvenation while there are current jobs in the system. Although Migrate-VM rejuvenation is better than Warm-VM rejuvenation in steady state availability, it can’t be always performed as it depends on the capacity of the other host. When the queue is empty and the virtual machine has no current jobs to serve, we propose to combine both VMM rejuvenation and VM rejuvenation. We show that the proposed technique can enhance the availability of VMs.展开更多
Virtual Machine(VM) allocation for multiple tenants is an important and challenging problem to provide efficient infrastructure services in cloud data centers. Tenants run applications on their allocated VMs, and th...Virtual Machine(VM) allocation for multiple tenants is an important and challenging problem to provide efficient infrastructure services in cloud data centers. Tenants run applications on their allocated VMs, and the network distance between a tenant's VMs may considerably impact the tenant's Quality of Service(Qo S). In this study, we define and formulate the multi-tenant VM allocation problem in cloud data centers, considering the VM requirements of different tenants, and introducing the allocation goal of minimizing the sum of the VMs' network diameters of all tenants. Then, we propose a Layered Progressive resource allocation algorithm for multi-tenant cloud data centers based on the Multiple Knapsack Problem(LP-MKP). The LP-MKP algorithm uses a multi-stage layered progressive method for multi-tenant VM allocation and efficiently handles unprocessed tenants at each stage. This reduces resource fragmentation in cloud data centers, decreases the differences in the Qo S among tenants, and improves tenants' overall Qo S in cloud data centers. We perform experiments to evaluate the LP-MKP algorithm and demonstrate that it can provide significant gains over other allocation algorithms.展开更多
Cloud data centers, such as Amazon EC2, host myriad big data applications using Virtual Machines(VMs). As these applications are communication-intensive, optimizing network transfer between VMs is critical to the perf...Cloud data centers, such as Amazon EC2, host myriad big data applications using Virtual Machines(VMs). As these applications are communication-intensive, optimizing network transfer between VMs is critical to the performance of these applications and network utilization of data centers. Previous studies have addressed this issue by scheduling network flows with coflow semantics or optimizing VM placement with traffic considerations.However, coflow scheduling and VM placement have been conducted orthogonally. In fact, these two mechanisms are mutually dependent, and optimizing these two complementary degrees of freedom independently turns out to be suboptimal. In this paper, we present VirtCO, a practical framework that jointly schedules coflows and places VMs ahead of VM launch to optimize the overall performance of data center applications. We model the joint coflow scheduling and VM placement optimization problem, and propose effective heuristics for solving it. We further implement VirtCO with OpenStack and deploy it in a testbed environment. Extensive evaluation of real-world traces shows that compared with state-of-the-art solutions, VirtCO greatly reduces the average coflow completion time by up to 36.5%. This new framework is also compatible with and readily deployable within existing data center architectures.展开更多
With the wide application of virtualization technology in cloud data centers, how to effectively place virtual machine (VM) is becoming a major issue for cloud providers. The existing virtual machine placement (VMP...With the wide application of virtualization technology in cloud data centers, how to effectively place virtual machine (VM) is becoming a major issue for cloud providers. The existing virtual machine placement (VMP) solutions are mainly to optimize server resources. However, they pay little consideration on network resources optimization, and they do not concern the impact of the network topology and the current network traffic. A multi-resource constraints VMP scheme is proposed. Firstly, the authors attempt to reduce the total communication traffic in the data center network, which is abstracted as a quadratic assignment problem; and then aim at optimizing network maximum link utilization (MLU). On the condition of slight variation of the total traffic, minimizing MLU can balance network traffic distribution and reduce network congestion hotspots, a classic combinatorial optimization problem as well as NP-hard problem. Ant colony optimization and 2-opt local search are combined to solve the problem. Simulation shows that MLU is decreased by 20%, and the number of hot links is decreased by 37%.展开更多
Both performance and energy cost are impor- tant concerns for current data center operators. Traditionally, however, IT and mechanical engineers have separately op- timized the cyber and physical aspects of data cente...Both performance and energy cost are impor- tant concerns for current data center operators. Traditionally, however, IT and mechanical engineers have separately op- timized the cyber and physical aspects of data center operations. This paper considers both of these aspects with the eventual goal of developing performance and power management techniques that operate holistically to control the entire cyber-physical complex of data center installations. Toward this end, we propose a balance of payments model for holis- tic power and performance management. As an example of coordinated cyber-physical system management, the energy- aware cyber-physical system (EaCPS) uses an application controller on the cyber side to guarantee application perfor- mance, and on the physical side, it utilizes electric current- aware capacity management (CACM) to smartly place exe- cutables to reduce the energy consumption of each chassis present in a data center rack. A web application, representa- tive of a multi-tier web site, is used to evaluate the perfor- mance of the controller on the cyber side, the CACM control on the physical side, and the holistic EaCPS methods in a mid-size instrumented data center. Results indicate that coor- dinated EaCPS outperforms separate cyber and physical con- trol modules.展开更多
随着高职院校信息化建设的深入,传统数据中心在数据治理与互通上面临技术瓶颈,为此提出软件定义网络(Software Defined Network,SDN)虚拟化与微服务架构及分布式存储构建新型优化方案。实验表明,优化后架构数据传输效率提升47.3%,跨系...随着高职院校信息化建设的深入,传统数据中心在数据治理与互通上面临技术瓶颈,为此提出软件定义网络(Software Defined Network,SDN)虚拟化与微服务架构及分布式存储构建新型优化方案。实验表明,优化后架构数据传输效率提升47.3%,跨系统互通时延降低62.1%,安全防护能力提升58.7%,有效解决了数据孤岛问题,为高职院校数字化转型提供了可靠的技术支撑。展开更多
基金supported in part by the following funding agencies of China:National Natural Science Foundation under Grant 61602050 and U1534201National Key Research and Development Program of China under Grant 2016QY01W0200
文摘Virtual data center is a new form of cloud computing concept applied to data center. As one of the most important challenges, virtual data center embedding problem has attracted much attention from researchers. In data centers, energy issue is very important for the reality that data center energy consumption has increased by dozens of times in the last decade. In this paper, we are concerned about the cost-aware multi-domain virtual data center embedding problem. In order to solve this problem, this paper first addresses the energy consumption model. The model includes the energy consumption model of the virtual machine node and the virtual switch node, to quantify the energy consumption in the virtual data center embedding process. Based on the energy consumption model above, this paper presents a heuristic algorithm for cost-aware multi-domain virtual data center embedding. The algorithm consists of two steps: inter-domain embedding and intra-domain embedding. Inter-domain virtual data center embedding refers to dividing virtual data center requests into several slices to select the appropriate single data center. Intra-domain virtual data center refers to embedding virtual data center requests in each data center. We first propose an inter-domain virtual data center embedding algorithm based on label propagation to select the appropriate single data center. We then propose a cost-aware virtual data center embedding algorithm to perform the intra-domain data center embedding. Extensive simulation results show that our proposed algorithm in this paper can effectively reduce the energy consumption while ensuring the success ratio of embedding.
基金This research was partially supported by the National Grand Fundamental Research 973 Program of China under Grant (No. 2013CB329103), Natural Science Foundation of China grant (No. 61271171), the Fundamental Research Funds for the Central Universities (ZYGX2013J002, ZYGX2012J004, ZYGX2010J002, ZYGX2010J009), Guangdong Science and Technology Project (2012B090500003, 2012B091000163, 2012556031).
文摘Virtualization is a common technology for resource sharing in data center. To make efficient use of data center resources, the key challenge is to map customer demands (modeled as virtual data center, VDC) to the physical data center effectively. In this paper, we focus on this problem. Distinct with previous works, our study of VDC embedding problem is under the assumption that switch resource is the bottleneck of data center networks (DCNs). To this end, we not only propose relative cost to evaluate embedding strategy, decouple embedding problem into VM placement with marginal resource assignment and virtual link mapping with decided source-destination based on the property of fat-tree, but also design the traffic aware embedding algorithm (TAE) and first fit virtual link mapping (FFLM) to map virtual data center requests to a physical data center. Simulation results show that TAE+FFLM could increase acceptance rate and reduce network cost (about 49% in the case) at the same time. The traffie aware embedding algorithm reduces the load of core-link traffic and brings the optimization opportunity for data center network energy conservation.
基金supported in part by National Key Basic Research Program of China (973 program) under Grant No.2011CB302506Important National Science & Technology Specific Projects: Next-Generation Broadband Wireless Mobile Communications Network under Grant No.2011ZX03002-001-01Innovative Research Groups of the National Natural Science Foundation of China under Grant No.60821001
文摘Resource Scheduling is crucial to data centers. However, most previous works focus only on one-dimensional resource models which ignoring the fact that multiple resources simultaneously utilized, including CPU, memory and network bandwidth. As cloud computing allows uncoordinated and heterogeneous users to share a data center, competition for multiple resources has become increasingly severe. Motivated by the differences on integrated utilization obtained from different packing schemes, in this paper we take the scheduling problem as a multi-dimensional combinatorial optimization problem with constraint satisfaction. With NP hardness, we present Multiple attribute decision based Integrated Resource Scheduling (MIRS), and a novel heuristic algorithm to gain the approximate optimal solution. Refers to simulation results, in face of various workload sets, our algorithm has significant superiorities in terms of efficiency and performance compared with previous methods.
基金supported by the ZTE-BJTU Collaborative Research Program under Grant No. K11L00190the Fundamental Research Funds for the Central Universities under Grant No. K12JB00060
文摘1 Introduction The history of data centers can be traced back to the 1960s. Early data centers were deployed on main- frames that were time-shared by users via remote terminals. The boom in data centers came duringthe internet era. Many companies started building large inter- net-connected facililies,
基金supported by the National Research Foundation (NRF) of Korea through contract N-14-NMIR06
文摘Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume more energy but also produce greenhouse gases. Because of large amount of power consumption, data center providers go for different types of power generator to increase the profit margin which indirectly affects the environment. Several studies are carried out to reduce the power consumption of a data center. One of the techniques to reduce power consumption is virtualization. After several studies, it is stated that hardware plays a very important role. As the load increases, the power consumption of the CPU is also increased. Therefore, by extending the study of virtualization to reduce the power consumption, a hardware-based algorithm for virtual machine provisioning in a private cloud can significantly improve the performance by considering hardware as one of the important factors.
文摘Server virtualization is an essential component in virtualized software infrastructure such as cloud computing. Virtual machines are generated through a software called virtual machine monitor (VMM) running on physical servers. The risks of software aging caused by aging-related bugs affect both VM and VMM. As a result, service reliability degrades may generate huge financial losses to companies. This paper presents an analytic model using stochastic reward nets for time-based rejuvenation techniques of VMM and VM. We propose to manipulate the VM behavior while the VMM rejuvenation is according to the load on the system. Using a previous Petri net model of virtualized server, we performed an algorithm in order to optimize rejuvenation technique and achieve high availability. So we perform Migrate-VM rejuvenation or Warm-VM rejuvenation while there are current jobs in the system. Although Migrate-VM rejuvenation is better than Warm-VM rejuvenation in steady state availability, it can’t be always performed as it depends on the capacity of the other host. When the queue is empty and the virtual machine has no current jobs to serve, we propose to combine both VMM rejuvenation and VM rejuvenation. We show that the proposed technique can enhance the availability of VMs.
基金supported in part by the National Key Basic Research and Development (973) Program of China (No. 2011CB302600)the National Natural Science Foundation of China (No. 61222205)+1 种基金the Program for New Century Excellent Talents in Universitythe Fok Ying-Tong Education Foundation (No. 141066)
文摘Virtual Machine(VM) allocation for multiple tenants is an important and challenging problem to provide efficient infrastructure services in cloud data centers. Tenants run applications on their allocated VMs, and the network distance between a tenant's VMs may considerably impact the tenant's Quality of Service(Qo S). In this study, we define and formulate the multi-tenant VM allocation problem in cloud data centers, considering the VM requirements of different tenants, and introducing the allocation goal of minimizing the sum of the VMs' network diameters of all tenants. Then, we propose a Layered Progressive resource allocation algorithm for multi-tenant cloud data centers based on the Multiple Knapsack Problem(LP-MKP). The LP-MKP algorithm uses a multi-stage layered progressive method for multi-tenant VM allocation and efficiently handles unprocessed tenants at each stage. This reduces resource fragmentation in cloud data centers, decreases the differences in the Qo S among tenants, and improves tenants' overall Qo S in cloud data centers. We perform experiments to evaluate the LP-MKP algorithm and demonstrate that it can provide significant gains over other allocation algorithms.
基金supported by the National Key R&D Program of China(No.2017YFB1003000)the National Natural Science Foundation of China(Nos.61572129,61602112,61502097,61702096,61320106007,and 61632008)+4 种基金the International S&T Cooperation Program of China(No.2015DFA10490)the National Science Foundation of Jiangsu Province(Nos.BK20160695 and BK20170689)the Jiangsu Provincial Key Laboratory of Network and Information Security(No.BM2003201)the Key Laboratory of Computer Network and InformationIntegration of Ministry of Education of China(No.93K-9)supported by the Collaborative Innovation Center of Novel Software Technology and Industrialization and Collaborative Innovation Center of Wireless Communications Technology
文摘Cloud data centers, such as Amazon EC2, host myriad big data applications using Virtual Machines(VMs). As these applications are communication-intensive, optimizing network transfer between VMs is critical to the performance of these applications and network utilization of data centers. Previous studies have addressed this issue by scheduling network flows with coflow semantics or optimizing VM placement with traffic considerations.However, coflow scheduling and VM placement have been conducted orthogonally. In fact, these two mechanisms are mutually dependent, and optimizing these two complementary degrees of freedom independently turns out to be suboptimal. In this paper, we present VirtCO, a practical framework that jointly schedules coflows and places VMs ahead of VM launch to optimize the overall performance of data center applications. We model the joint coflow scheduling and VM placement optimization problem, and propose effective heuristics for solving it. We further implement VirtCO with OpenStack and deploy it in a testbed environment. Extensive evaluation of real-world traces shows that compared with state-of-the-art solutions, VirtCO greatly reduces the average coflow completion time by up to 36.5%. This new framework is also compatible with and readily deployable within existing data center architectures.
基金supported by the National Natural Science Foundation of China(61002011)the National High Technology Research and Development Program of China(863 Program)(2013AA013303)+2 种基金the Fundamental Research Funds for the Central Universities(2013RC1104)the Natural Science Foundation of Gansu Province,China(1308RJZA306)the Open Fund of the State Key Laboratory of Software Development Environment(SKLSDE-2009KF-2-08)
文摘With the wide application of virtualization technology in cloud data centers, how to effectively place virtual machine (VM) is becoming a major issue for cloud providers. The existing virtual machine placement (VMP) solutions are mainly to optimize server resources. However, they pay little consideration on network resources optimization, and they do not concern the impact of the network topology and the current network traffic. A multi-resource constraints VMP scheme is proposed. Firstly, the authors attempt to reduce the total communication traffic in the data center network, which is abstracted as a quadratic assignment problem; and then aim at optimizing network maximum link utilization (MLU). On the condition of slight variation of the total traffic, minimizing MLU can balance network traffic distribution and reduce network congestion hotspots, a classic combinatorial optimization problem as well as NP-hard problem. Ant colony optimization and 2-opt local search are combined to solve the problem. Simulation shows that MLU is decreased by 20%, and the number of hot links is decreased by 37%.
文摘Both performance and energy cost are impor- tant concerns for current data center operators. Traditionally, however, IT and mechanical engineers have separately op- timized the cyber and physical aspects of data center operations. This paper considers both of these aspects with the eventual goal of developing performance and power management techniques that operate holistically to control the entire cyber-physical complex of data center installations. Toward this end, we propose a balance of payments model for holis- tic power and performance management. As an example of coordinated cyber-physical system management, the energy- aware cyber-physical system (EaCPS) uses an application controller on the cyber side to guarantee application perfor- mance, and on the physical side, it utilizes electric current- aware capacity management (CACM) to smartly place exe- cutables to reduce the energy consumption of each chassis present in a data center rack. A web application, representa- tive of a multi-tier web site, is used to evaluate the perfor- mance of the controller on the cyber side, the CACM control on the physical side, and the holistic EaCPS methods in a mid-size instrumented data center. Results indicate that coor- dinated EaCPS outperforms separate cyber and physical con- trol modules.
文摘随着高职院校信息化建设的深入,传统数据中心在数据治理与互通上面临技术瓶颈,为此提出软件定义网络(Software Defined Network,SDN)虚拟化与微服务架构及分布式存储构建新型优化方案。实验表明,优化后架构数据传输效率提升47.3%,跨系统互通时延降低62.1%,安全防护能力提升58.7%,有效解决了数据孤岛问题,为高职院校数字化转型提供了可靠的技术支撑。