On-orbit spacecraft face many threats,such as collisions with debris or other spacecraft.Therefore,perception of the surrounding space environment is vitally important for on-orbit spacecraft.Spacecraft require a dyna...On-orbit spacecraft face many threats,such as collisions with debris or other spacecraft.Therefore,perception of the surrounding space environment is vitally important for on-orbit spacecraft.Spacecraft require a dynamic attitude tracking ability with high precision for such missions.This paper aims to address the above problem using an improved backstepping controller.The tracking mission is divided into two phases:coarse alignment and fine alignment.In the first phase,a traditional saturation controller is utilized to limit the maximum attitude angular velocity according to the actuator’s ability.For the second phase,the proposed backstepping controller with different virtual control inputs is applied to track the moving target.To fulfill the high precision attitude tracking requirements,a hybrid attitude control actuator consisting of a Control Moment Gyro(CMG)and Reaction Wheel(RW)is constructed,which can simultaneously avoid the CMG singularity and RW saturation through the use of an angular momentum optimal management strategy,such as null motion.Finally,five simulation scenarios were carried out to demonstrate the effectiveness of the proposed control strategy and hybrid actuator.展开更多
This paper described an effective method to implement human & hardware in the loop simulation(HHILS), which is based on MATLAB system and can be used to study human driving actions in the abrupt situation and vehi...This paper described an effective method to implement human & hardware in the loop simulation(HHILS), which is based on MATLAB system and can be used to study human driving actions in the abrupt situation and vehicle stability control(VSC). A hybrid control algorithm, which makes full use of the advantages of robust control and fuzzy logic, was adopted in VSC system. The results of HHILS show that HHILS’ application on the vehicle handling and VSC resarch is feasible. These results also confirm that the handling performance of the vehicle with VSC is improved obviously compared to the vehicle without VSC.展开更多
基金the support provided by the National Natural Science Foundation of China(No.61973153)the National Key Research and Development Plan of China(No.2016YFB0500901)the Open Fund of the National Defense Key Discipline Laboratory of Micro-Spacecraft Technology of China(No.HIT.KLOF.MST.201705)
文摘On-orbit spacecraft face many threats,such as collisions with debris or other spacecraft.Therefore,perception of the surrounding space environment is vitally important for on-orbit spacecraft.Spacecraft require a dynamic attitude tracking ability with high precision for such missions.This paper aims to address the above problem using an improved backstepping controller.The tracking mission is divided into two phases:coarse alignment and fine alignment.In the first phase,a traditional saturation controller is utilized to limit the maximum attitude angular velocity according to the actuator’s ability.For the second phase,the proposed backstepping controller with different virtual control inputs is applied to track the moving target.To fulfill the high precision attitude tracking requirements,a hybrid attitude control actuator consisting of a Control Moment Gyro(CMG)and Reaction Wheel(RW)is constructed,which can simultaneously avoid the CMG singularity and RW saturation through the use of an angular momentum optimal management strategy,such as null motion.Finally,five simulation scenarios were carried out to demonstrate the effectiveness of the proposed control strategy and hybrid actuator.
文摘This paper described an effective method to implement human & hardware in the loop simulation(HHILS), which is based on MATLAB system and can be used to study human driving actions in the abrupt situation and vehicle stability control(VSC). A hybrid control algorithm, which makes full use of the advantages of robust control and fuzzy logic, was adopted in VSC system. The results of HHILS show that HHILS’ application on the vehicle handling and VSC resarch is feasible. These results also confirm that the handling performance of the vehicle with VSC is improved obviously compared to the vehicle without VSC.