Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradi...Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradiance to solar power production.Ensemble simulations from such weather models aim to quantify uncertainty in the future development of the weather,and can be used to propagate this uncertainty through the model chain to generate probabilistic solar energy predictions.However,ensemble prediction systems are known to exhibit systematic errors,and thus require post-processing to obtain accurate and reliable probabilistic forecasts.The overarching aim of our study is to systematically evaluate different strategies to apply post-processing in model chain approaches with a specific focus on solar energy:not applying any post-processing at all;post-processing only the irradiance predictions before the conversion;post-processing only the solar power predictions obtained from the model chain;or applying post-processing in both steps.In a case study based on a benchmark dataset for the Jacumba solar plant in the U.S.,we develop statistical and machine learning methods for postprocessing ensemble predictions of global horizontal irradiance(GHI)and solar power generation.Further,we propose a neural-network-based model for direct solar power forecasting that bypasses the model chain.Our results indicate that postprocessing substantially improves the solar power generation forecasts,in particular when post-processing is applied to the power predictions.The machine learning methods for post-processing slightly outperform the statistical methods,and the direct forecasting approach performs comparably to the post-processing strategies.展开更多
In the present computational fluid dynamics (CFD) community, post-processing is regarded as a procedure to view parameter distribution, detect characteristic structure and reveal physical mechanism of fluid flow bas...In the present computational fluid dynamics (CFD) community, post-processing is regarded as a procedure to view parameter distribution, detect characteristic structure and reveal physical mechanism of fluid flow based on computational or experimental results. Field plots by contours, iso-surfaces, streamlines, vectors and others are traditional post-processing techniques. While the shock wave, as one important and critical flow structure in many aerodynamic problems, can hardly be detected or distinguished in a direct way using these traditional methods, due to possible confusions with other similar discontinuous flow structures like slip line, contact discontinuity, etc. Therefore, method for automatic detection of shock wave in post-processing is of great importance for both academic research and engineering applications. In this paper, the current status of methodologies developed for shock wave detection and implementations in post-processing platform are reviewed, as well as discussions on advantages and limitations of the existing methods and proposals for further studies of shock wave detection method. We also develop an advanced post-processing software, with improved shock detection.展开更多
Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve...Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32× 32 APD array is up to tens of Gbits/s.展开更多
In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflec...In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflect actual situations and facilitate their computation and analyses.Given the importance of model building, further processing methods about traditional seismic interpretation results from Landmark should be studied and the processed result can then be directly used in numerical simulation computations.Through this data conversion procedure, Landmark and FLAC(the international general stress software) are seamlessly connected.Thus, the format conversion between the two systems and the pre-and post-processing in simulation computation is realized.A practical application indicates that this method has many advantages such as simple operation, high accuracy of the element subdivision and high speed, which may definitely satisfy the actual needs of floor grid cutting.展开更多
The travel time data collection method is used to assist the congestion management. The use of traditional sensors (e.g. inductive loops, AVI sensors) or more recent Bluetooth sensors installed on major roads for coll...The travel time data collection method is used to assist the congestion management. The use of traditional sensors (e.g. inductive loops, AVI sensors) or more recent Bluetooth sensors installed on major roads for collecting data is not sufficient because of their limited coverage and expensive costs for installation and maintenance. Application of the Global Positioning Systems (GPS) in travel time and delay data collections is proven to be efficient in terms of accuracy, level of details for the data and required data collection of man-power. While data collection automation is improved by the GPS technique, human errors can easily find their way through the post-processing phase, and therefore data post-processing remains a challenge especially in case of big projects with high amount of data. This paper introduces a stand-alone post-processing tool called GPS Calculator, which provides an easy-to-use environment to carry out data post-processing. This is a Visual Basic application that processes the data files obtained in the field and integrates them into Geographic Information Systems (GIS) for analysis and representation. The results show that this tool obtains similar results to the currently used data post-processing method, reduces the post-processing effort, and also eliminates the need for the second person during the data collection.展开更多
When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive ...When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive numerical data may probably exceed the capacity of available memory,resulting in failure of rendering.Based on the out-of-core technique,this paper proposes a method to effectively utilize external storage and reduce memory usage dramatically,so as to solve the problem of insufficient memory for massive data rendering on general personal computers.Based on this method,a new postprocessor is developed.It is capable to illustrate filling and solidification processes of casting,as well as thermal stess.The new post-processor also provides fast interaction to simulation results.Theoretical analysis as well as several practical examples prove that the memory usage and loading time of the post-processor are independent of the size of the relevant files,but the proportion of the number of cells on surface.Meanwhile,the speed of rendering and fetching of value from the mouse is appreciable,and the demands of real-time and interaction are satisfied.展开更多
To improve the ability of detecting underwater targets under strong wideband interference environment,an efficient method of line spectrum extraction is proposed,which fully utilizes the feature of the target spectrum...To improve the ability of detecting underwater targets under strong wideband interference environment,an efficient method of line spectrum extraction is proposed,which fully utilizes the feature of the target spectrum that the high intense and stable line spectrum is superimposed on the wide continuous spectrum.This method modifies the traditional beam forming algorithm by calculating and fusing the beam forming results at multi-frequency band and multi-azimuth interval,showing an excellent way to extract the line spectrum when the interference and the target are not in the same azimuth interval simultaneously.Statistical efficiency of the estimated azimuth variance and corresponding power of the line spectrum band depends on the line spectra ratio(LSR)of the line spectrum.The change laws of the output signal to noise ratio(SNR)with the LSR,the input SNR,the integration time and the filtering bandwidth of different algorithms bring the selection principle of the critical LSR.As the basis,the detection gain of wideband energy integration and the narrowband line spectrum algorithm are theoretically analyzed.The simulation detection gain demonstrates a good match with the theoretical model.The application conditions of all methods are verified by the receiver operating characteristic(ROC)curve and experimental data from Qiandao Lake.In fact,combining the two methods for target detection reduces the missed detection rate.The proposed post-processing method in2-dimension with the Kalman filter in the time dimension and the background equalization algorithm in the azimuth dimension makes use of the strong correlation between adjacent frames,could further remove background fluctuation and improve the display effect.展开更多
This paper proposed improvements to the low bit rate parametric audio coder with sinusoid model as its kernel. Firstly, we propose a new method to effectively order and select the perceptually most important sinusoids...This paper proposed improvements to the low bit rate parametric audio coder with sinusoid model as its kernel. Firstly, we propose a new method to effectively order and select the perceptually most important sinusoids. The sinusoid which contributes most to the reduction of overall NMR is chosen. Combined with our improved parametric psychoacoustic model and advanced peak riddling techniques, the number of sinusoids required can be greatly reduced and the coding efficiency can be greatly enhanced. A lightweight version is also given to reduce the amount of computation with only little sacrifice of performance. Secondly, we propose two enhancement techniques for sinusoid synthesis: bandwidth enhancement and line enhancement. With little overhead, the effective bandwidth can be extended one more octave; the timbre tends to sound much brighter, thicker and more beautiful.展开更多
Low contrast of Magnetic Resonance(MR)images limits the visibility of subtle structures and adversely affects the outcome of both subjective and automated diagnosis.State-of-the-art contrast boosting techniques intole...Low contrast of Magnetic Resonance(MR)images limits the visibility of subtle structures and adversely affects the outcome of both subjective and automated diagnosis.State-of-the-art contrast boosting techniques intolerably alter inherent features of MR images.Drastic changes in brightness features,induced by post-processing are not appreciated in medical imaging as the grey level values have certain diagnostic meanings.To overcome these issues this paper proposes an algorithm that enhance the contrast of MR images while preserving the underlying features as well.This method termed as Power-law and Logarithmic Modification-based Histogram Equalization(PLMHE)partitions the histogram of the image into two sub histograms after a power-law transformation and a log compression.After a modification intended for improving the dispersion of the sub-histograms and subsequent normalization,cumulative histograms are computed.Enhanced grey level values are computed from the resultant cumulative histograms.The performance of the PLMHE algorithm is comparedwith traditional histogram equalization based algorithms and it has been observed from the results that PLMHE can boost the image contrast without causing dynamic range compression,a significant change in mean brightness,and contrast-overshoot.展开更多
In the analysis of high-rise building, traditional displacement-based plane elements are often used to get the in-plane internal forces of the shear walls by stress integration. Limited by the singular problem produce...In the analysis of high-rise building, traditional displacement-based plane elements are often used to get the in-plane internal forces of the shear walls by stress integration. Limited by the singular problem produced by wall holes and the loss of precision induced by using differential method to derive strains, the displacement-based elements cannot always present accuracy enough for design. In this paper, the hybrid post-processing procedure based on the Hellinger-Reissner variational principle is used for improving the stress precision of two quadrilateral plane elements. In order to find the best stress field, three different forms are assumed for the displacement-based plane elements and with drilling DOF. Numerical results show that by using the proposed method, the accuracy of stress solutions of these two displacement-based plane elements can be improved.展开更多
Laser additive manufacturing(LAM)of titanium(Ti)alloys has emerged as a transformative technology with vast potential across multiple industries.To recap the state of the art,Ti alloys processed by two essential LAM t...Laser additive manufacturing(LAM)of titanium(Ti)alloys has emerged as a transformative technology with vast potential across multiple industries.To recap the state of the art,Ti alloys processed by two essential LAM techniques(i.e.,laser powder bed fusion and laser-directed energy deposition)will be reviewed,covering the aspects of processes,materials and post-processing.The impacts of process parameters and strategies for optimizing parameters will be elucidated.Various types of Ti alloys processed by LAM,includingα-Ti,(α+β)-Ti,andβ-Ti alloys,will be overviewed in terms of micro structures and benchmarking properties.Furthermore,the post-processing methods for improving the performance of L AM-processed Ti alloys,including conventional and novel heat treatment,hot isostatic pressing,and surface processing(e.g.,ultrasonic and laser shot peening),will be systematically reviewed and discussed.The review summarizes the process windows,properties,and performance envelopes and benchmarks the research achievements in LAM of Ti alloys.The outlooks of further trends in LAM of Ti alloys are also highlighted at the end of the review.This comprehensive review could serve as a valuable resource for researchers and practitioners,promoting further advancements in LAM-built Ti alloys and their applications.展开更多
The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profile...The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profiles:explicit feedback(interactive behavior),which significantly influences users’short-term interests,and implicit feedback(viewing time),which substantially affects their long-term interests.However,the previous model fails to distinguish between these two feedback methods,leading it to predict only the overall preferences of users based on extensive historical behavior sequences.Consequently,it cannot differentiate between users’long-term and shortterm interests,resulting in low accuracy in describing users’interest states and predicting the evolution of their interests.This paper introduces a video recommendationmodel calledCAT-MFRec(CrossAttention Transformer-Mixed Feedback Recommendation)designed to differentiate between explicit and implicit user feedback within the DIEN(Deep Interest Evolution Network)framework.This study emphasizes the separate learning of the two types of behavioral feedback,effectively integrating them through the cross-attention mechanism.Additionally,it leverages the long sequence dependence capabilities of Transformer technology to accurately construct user interest profiles and predict the evolution of user interests.Experimental results indicate that CAT-MF Rec significantly outperforms existing recommendation methods across various performance indicators.This advancement offers new theoretical and practical insights for the development of video recommendations,particularly in addressing complex and dynamic user behavior patterns.展开更多
Internal learning-based video inpainting methods have shown promising results by exploiting the intrinsic properties of the video to fill in the missing region without external dataset supervision.However,existing int...Internal learning-based video inpainting methods have shown promising results by exploiting the intrinsic properties of the video to fill in the missing region without external dataset supervision.However,existing internal learning-based video inpainting methods would produce inconsistent structures or blurry textures due to the insufficient utilisation of motion priors within the video sequence.In this paper,the authors propose a new internal learning-based video inpainting model called appearance consistency and motion coherence network(ACMC-Net),which can not only learn the recurrence of appearance prior but can also capture motion coherence prior to improve the quality of the inpainting results.In ACMC-Net,a transformer-based appearance network is developed to capture global context information within the video frame for representing appearance consistency accurately.Additionally,a novel motion coherence learning scheme is proposed to learn the motion prior in a video sequence effectively.Finally,the learnt internal appearance consistency and motion coherence are implicitly propagated to the missing regions to achieve inpainting well.Extensive experiments conducted on the DAVIS dataset show that the proposed model obtains the superior performance in terms of quantitative measurements and produces more visually plausible results compared with the state-of-the-art methods.展开更多
Airway management plays a crucial role in providing adequate oxygenation and ventilation to patients during various medical procedures and emergencies.When patients have a limited mouth opening due to factors such as ...Airway management plays a crucial role in providing adequate oxygenation and ventilation to patients during various medical procedures and emergencies.When patients have a limited mouth opening due to factors such as trauma,inflammation,or anatomical abnormalities airway management becomes challenging.A commonly utilized method to overcome this challenge is the use of video laryngoscopy(VL),which employs a specialized device equipped with a camera and a light source to allow a clear view of the larynx and vocal cords.VL overcomes the limitations of direct laryngoscopy in patients with limited mouth opening,enabling better visualization and successful intubation.Various types of VL blades are available.We devised a novel flangeless video laryngoscope for use in patients with a limited mouth opening and then tested it on a manikin.展开更多
Semantic segmentation is a core task in computer vision that allows AI models to interact and understand their surrounding environment. Similarly to how humans subconsciously segment scenes, this ability is crucial fo...Semantic segmentation is a core task in computer vision that allows AI models to interact and understand their surrounding environment. Similarly to how humans subconsciously segment scenes, this ability is crucial for scene understanding. However, a challenge many semantic learning models face is the lack of data. Existing video datasets are limited to short, low-resolution videos that are not representative of real-world examples. Thus, one of our key contributions is a customized semantic segmentation version of the Walking Tours Dataset that features hour-long, high-resolution, real-world data from tours of different cities. Additionally, we evaluate the performance of open-vocabulary, semantic model OpenSeeD on our own custom dataset and discuss future implications.展开更多
Objective: The purpose of this study was to evaluate health education using videos and leaflets for preconception care (PCC) awareness among adolescent females up to six months after the health education. Methods: The...Objective: The purpose of this study was to evaluate health education using videos and leaflets for preconception care (PCC) awareness among adolescent females up to six months after the health education. Methods: The subjects were female university students living in the Kinki area. A longitudinal survey was conducted on 67 members in the intervention group, who received the health education, and 52 members in the control group, who did not receive the health education. The primary outcome measures were knowledge of PCC and the subscales of the Health Promotion Lifestyle Profile. Surveys were conducted before, after, and six months after the intervention in the intervention group, and an initial survey and survey six months later were conducted in the control group. Cochran’s Q test, Bonferroni’s multiple comparison test, and McNemar’s test were used to analyze the knowledge of PCC data. The Health Awareness, Nutrition, and Stress Management subscales of the Health Promotion Lifestyle Profile were analyzed by paired t-test, and comparisons between the intervention and control groups were performed using the two-way repeated measures analysis of variance. Results: In the intervention group of 67 people, the number of subjects who answered “correct” for five of the nine items concerning knowledge of PCC increased immediately after the health education (P = 0.006) but decreased for five items from immediately after the health education to six months later (P = 0.043). In addition, the number of respondents who answered “correct” for “low birth weight infants and future lifestyle-related diseases” (P = 0.016) increased after six months compared with before the health education. For the 52 subjects in the control group, there was no change in the number of subjects who answered “correct” for eight out of the nine items after six months. There was also no increase in scores for the Health Promotion Lifestyle Profile after six months for either the intervention or control group. Conclusion: Providing health education about PCC using videos and leaflets to adolescent females was shown to enhance the knowledge of PCC immediately after the education.展开更多
Multimedia semantic communication has been receiving increasing attention due to its significant enhancement of communication efficiency.Semantic coding,which is oriented towards extracting and encoding the key semant...Multimedia semantic communication has been receiving increasing attention due to its significant enhancement of communication efficiency.Semantic coding,which is oriented towards extracting and encoding the key semantics of video for transmission,is a key aspect in the framework of multimedia semantic communication.In this paper,we propose a facial video semantic coding method with low bitrate based on the temporal continuity of video semantics.At the sender’s end,we selectively transmit facial keypoints and deformation information,allocating distinct bitrates to different keypoints across frames.Compressive techniques involving sampling and quantization are employed to reduce the bitrate while retaining facial key semantic information.At the receiver’s end,a GAN-based generative network is utilized for reconstruction,effectively mitigating block artifacts and buffering problems present in traditional codec algorithms under low bitrates.The performance of the proposed approach is validated on multiple datasets,such as VoxCeleb and TalkingHead-1kH,employing metrics such as LPIPS,DISTS,and AKD for assessment.Experimental results demonstrate significant advantages over traditional codec methods,achieving up to approximately 10-fold bitrate reduction in prolonged,stable head pose scenarios across diverse conversational video settings.展开更多
Objectives:Medical students often rely on recreational internet media to relieve the stress caused by immense academic and life pressures,and among these media,short-form videos,which are an emerging digital medium,ha...Objectives:Medical students often rely on recreational internet media to relieve the stress caused by immense academic and life pressures,and among these media,short-form videos,which are an emerging digital medium,have gradually become the mainstream choice of students to relieve their stress.However,the addiction caused by their usage has attracted the widespread attention of both academia and society,which is why the purpose of this study is to systematically explore the underlying mechanisms that link perceived stress,entertainment gratification,emotional gratification,short-form video usage intensity,and short-form video addiction based on multiple theoretical frameworks including the Compensatory Internet Use Model(CIU),the Interaction of Person-Affect-Cognition-Execution Model(I-PACE),and the Use and Gratification Theory(UGT).Methods:A hypothetical model with 9 research hypotheses was constructed.Taking medical students from Chi-nese universities as the research subjects,1057 valid responses were collected through an online questionnaire survey,including 358 males and 658 females.Structural equation modelling(SEM)was performed using the AMOS software to test the research hypotheses.Results:(1)Perceived stress positively predicted entertainment gratification and emotional gratification(β=0.72,p<0.001;β=0.61,p<0.001);(2)Entertainment gratifi-cation and emotional gratification positively influenced short-form video usage intensity(β=0.35,p<0.001;β=0.19,p<0.001);(3)Entertainment gratification and emotional gratification positively predicted short-form video addiction(β=0.40,p<0.001;β=0.17,p<0.001);(4)Short-form video usage intensity positively influenced short-form video addiction(β=0.36,p<0.001);and(5)Perceived stress exerted an indirect but positive effect on both short-form video usage intensity and short-form video addiction,mediated by entertainment and emotional gratification(β=0.37,p<0.001;β=0.52,p<0.001).Conclusion:The mechanisms that underlie medical students’short-form video addiction in stressful situations were revealed in this study.It was found that stress enhances medical students’need for entertainment and emotional online compensation,prompting more frequent short-form video usage and ultimately leading to addiction.These results underscore the need to address the stressors faced by medical students.Effective interventions should prioritise stress management strategies and promote healthier alternative coping mechanisms to mitigate the risk of addiction.展开更多
Objectives:Short video addiction has emerged as a significant public health issue in recent years,with a growing trend toward severity.However,research on the causes and impacts of short video addiction remains limite...Objectives:Short video addiction has emerged as a significant public health issue in recent years,with a growing trend toward severity.However,research on the causes and impacts of short video addiction remains limited,and understanding of the variable“TikTok brain”is still in its infancy.Therefore,based on the Stimulus-Organism-Behavior-Consequence(SOBC)framework,we proposed six research hypotheses and constructed a model to explore the relationships between short video usage intensity,TikTok brain,short video addiction,and decreased attention control.Methods:Given that students are considered a high-risk group for excessive short video use,we collected 1086 valid participants from Chinese student users,including 609 males(56.1%)and 477 females(43.9%),with an average participant age of 19.84 years,to test the hypotheses.Results:(1)Short video usage intensity was positively related to short video addiction,TikTok brain,and decreased attention control;(2)TikTok brain was positively related to short video addiction and decreased attention control;and(3)Short video addiction was positively related to decreased attention control.Conclusions:These findings suggest that although excessive use of short video applications brings negative consequences,users still spend significant amounts of time on these platforms,indicating a need for strict self-regulation of usage time.展开更多
基金the Young Investigator Group“Artificial Intelligence for Probabilistic Weather Forecasting”funded by the Vector Stiftungfunding from the Federal Ministry of Education and Research(BMBF)and the Baden-Württemberg Ministry of Science as part of the Excellence Strategy of the German Federal and State Governments。
文摘Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradiance to solar power production.Ensemble simulations from such weather models aim to quantify uncertainty in the future development of the weather,and can be used to propagate this uncertainty through the model chain to generate probabilistic solar energy predictions.However,ensemble prediction systems are known to exhibit systematic errors,and thus require post-processing to obtain accurate and reliable probabilistic forecasts.The overarching aim of our study is to systematically evaluate different strategies to apply post-processing in model chain approaches with a specific focus on solar energy:not applying any post-processing at all;post-processing only the irradiance predictions before the conversion;post-processing only the solar power predictions obtained from the model chain;or applying post-processing in both steps.In a case study based on a benchmark dataset for the Jacumba solar plant in the U.S.,we develop statistical and machine learning methods for postprocessing ensemble predictions of global horizontal irradiance(GHI)and solar power generation.Further,we propose a neural-network-based model for direct solar power forecasting that bypasses the model chain.Our results indicate that postprocessing substantially improves the solar power generation forecasts,in particular when post-processing is applied to the power predictions.The machine learning methods for post-processing slightly outperform the statistical methods,and the direct forecasting approach performs comparably to the post-processing strategies.
文摘In the present computational fluid dynamics (CFD) community, post-processing is regarded as a procedure to view parameter distribution, detect characteristic structure and reveal physical mechanism of fluid flow based on computational or experimental results. Field plots by contours, iso-surfaces, streamlines, vectors and others are traditional post-processing techniques. While the shock wave, as one important and critical flow structure in many aerodynamic problems, can hardly be detected or distinguished in a direct way using these traditional methods, due to possible confusions with other similar discontinuous flow structures like slip line, contact discontinuity, etc. Therefore, method for automatic detection of shock wave in post-processing is of great importance for both academic research and engineering applications. In this paper, the current status of methodologies developed for shock wave detection and implementations in post-processing platform are reviewed, as well as discussions on advantages and limitations of the existing methods and proposals for further studies of shock wave detection method. We also develop an advanced post-processing software, with improved shock detection.
基金Supported by the Chinese Academy of Sciences Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics,Shanghai Branch,University of Science and Technology of Chinathe National Natural Science Foundation of China under Grant No 11405172
文摘Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32× 32 APD array is up to tens of Gbits/s.
基金Projects 50221402, 50490271 and 50025413 supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China (2009CB219603, 2009 CB724601, 2006CB202209 and 2005CB221500)+1 种基金the Key Project of the Ministry of Education (306002)the Program for Changjiang Scholars and Innovative Research Teams in Universities of MOE (IRT0408)
文摘In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflect actual situations and facilitate their computation and analyses.Given the importance of model building, further processing methods about traditional seismic interpretation results from Landmark should be studied and the processed result can then be directly used in numerical simulation computations.Through this data conversion procedure, Landmark and FLAC(the international general stress software) are seamlessly connected.Thus, the format conversion between the two systems and the pre-and post-processing in simulation computation is realized.A practical application indicates that this method has many advantages such as simple operation, high accuracy of the element subdivision and high speed, which may definitely satisfy the actual needs of floor grid cutting.
文摘The travel time data collection method is used to assist the congestion management. The use of traditional sensors (e.g. inductive loops, AVI sensors) or more recent Bluetooth sensors installed on major roads for collecting data is not sufficient because of their limited coverage and expensive costs for installation and maintenance. Application of the Global Positioning Systems (GPS) in travel time and delay data collections is proven to be efficient in terms of accuracy, level of details for the data and required data collection of man-power. While data collection automation is improved by the GPS technique, human errors can easily find their way through the post-processing phase, and therefore data post-processing remains a challenge especially in case of big projects with high amount of data. This paper introduces a stand-alone post-processing tool called GPS Calculator, which provides an easy-to-use environment to carry out data post-processing. This is a Visual Basic application that processes the data files obtained in the field and integrates them into Geographic Information Systems (GIS) for analysis and representation. The results show that this tool obtains similar results to the currently used data post-processing method, reduces the post-processing effort, and also eliminates the need for the second person during the data collection.
基金supported by the New Century Excellent Talents in University(NCET-09-0396)the National Science&Technology Key Projects of Numerical Control(2012ZX04014-031)+1 种基金the Natural Science Foundation of Hubei Province(2011CDB279)the Foundation for Innovative Research Groups of the Natural Science Foundation of Hubei Province,China(2010CDA067)
文摘When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive numerical data may probably exceed the capacity of available memory,resulting in failure of rendering.Based on the out-of-core technique,this paper proposes a method to effectively utilize external storage and reduce memory usage dramatically,so as to solve the problem of insufficient memory for massive data rendering on general personal computers.Based on this method,a new postprocessor is developed.It is capable to illustrate filling and solidification processes of casting,as well as thermal stess.The new post-processor also provides fast interaction to simulation results.Theoretical analysis as well as several practical examples prove that the memory usage and loading time of the post-processor are independent of the size of the relevant files,but the proportion of the number of cells on surface.Meanwhile,the speed of rendering and fetching of value from the mouse is appreciable,and the demands of real-time and interaction are satisfied.
基金supported by the National Natural Science Foundation of China(51875535)the Natural Science Foundation for Young Scientists of Shanxi Province(201701D221017,201901D211242)。
文摘To improve the ability of detecting underwater targets under strong wideband interference environment,an efficient method of line spectrum extraction is proposed,which fully utilizes the feature of the target spectrum that the high intense and stable line spectrum is superimposed on the wide continuous spectrum.This method modifies the traditional beam forming algorithm by calculating and fusing the beam forming results at multi-frequency band and multi-azimuth interval,showing an excellent way to extract the line spectrum when the interference and the target are not in the same azimuth interval simultaneously.Statistical efficiency of the estimated azimuth variance and corresponding power of the line spectrum band depends on the line spectra ratio(LSR)of the line spectrum.The change laws of the output signal to noise ratio(SNR)with the LSR,the input SNR,the integration time and the filtering bandwidth of different algorithms bring the selection principle of the critical LSR.As the basis,the detection gain of wideband energy integration and the narrowband line spectrum algorithm are theoretically analyzed.The simulation detection gain demonstrates a good match with the theoretical model.The application conditions of all methods are verified by the receiver operating characteristic(ROC)curve and experimental data from Qiandao Lake.In fact,combining the two methods for target detection reduces the missed detection rate.The proposed post-processing method in2-dimension with the Kalman filter in the time dimension and the background equalization algorithm in the azimuth dimension makes use of the strong correlation between adjacent frames,could further remove background fluctuation and improve the display effect.
文摘This paper proposed improvements to the low bit rate parametric audio coder with sinusoid model as its kernel. Firstly, we propose a new method to effectively order and select the perceptually most important sinusoids. The sinusoid which contributes most to the reduction of overall NMR is chosen. Combined with our improved parametric psychoacoustic model and advanced peak riddling techniques, the number of sinusoids required can be greatly reduced and the coding efficiency can be greatly enhanced. A lightweight version is also given to reduce the amount of computation with only little sacrifice of performance. Secondly, we propose two enhancement techniques for sinusoid synthesis: bandwidth enhancement and line enhancement. With little overhead, the effective bandwidth can be extended one more octave; the timbre tends to sound much brighter, thicker and more beautiful.
基金This work was supported by Taif university Researchers Supporting Project Number(TURSP-2020/114),Taif University,Taif,Saudi Arabia.
文摘Low contrast of Magnetic Resonance(MR)images limits the visibility of subtle structures and adversely affects the outcome of both subjective and automated diagnosis.State-of-the-art contrast boosting techniques intolerably alter inherent features of MR images.Drastic changes in brightness features,induced by post-processing are not appreciated in medical imaging as the grey level values have certain diagnostic meanings.To overcome these issues this paper proposes an algorithm that enhance the contrast of MR images while preserving the underlying features as well.This method termed as Power-law and Logarithmic Modification-based Histogram Equalization(PLMHE)partitions the histogram of the image into two sub histograms after a power-law transformation and a log compression.After a modification intended for improving the dispersion of the sub-histograms and subsequent normalization,cumulative histograms are computed.Enhanced grey level values are computed from the resultant cumulative histograms.The performance of the PLMHE algorithm is comparedwith traditional histogram equalization based algorithms and it has been observed from the results that PLMHE can boost the image contrast without causing dynamic range compression,a significant change in mean brightness,and contrast-overshoot.
文摘In the analysis of high-rise building, traditional displacement-based plane elements are often used to get the in-plane internal forces of the shear walls by stress integration. Limited by the singular problem produced by wall holes and the loss of precision induced by using differential method to derive strains, the displacement-based elements cannot always present accuracy enough for design. In this paper, the hybrid post-processing procedure based on the Hellinger-Reissner variational principle is used for improving the stress precision of two quadrilateral plane elements. In order to find the best stress field, three different forms are assumed for the displacement-based plane elements and with drilling DOF. Numerical results show that by using the proposed method, the accuracy of stress solutions of these two displacement-based plane elements can be improved.
基金financially supported by the 2022 MTC Young Individual Research Grants under Singapore Research,Innovation and Enterprise(RIE)2025 Plan(No.M22K3c0097)the Natural Science Foundation of US(No.DMR-2104933)the sponsorship of the China Scholarship Council(No.202106130051)。
文摘Laser additive manufacturing(LAM)of titanium(Ti)alloys has emerged as a transformative technology with vast potential across multiple industries.To recap the state of the art,Ti alloys processed by two essential LAM techniques(i.e.,laser powder bed fusion and laser-directed energy deposition)will be reviewed,covering the aspects of processes,materials and post-processing.The impacts of process parameters and strategies for optimizing parameters will be elucidated.Various types of Ti alloys processed by LAM,includingα-Ti,(α+β)-Ti,andβ-Ti alloys,will be overviewed in terms of micro structures and benchmarking properties.Furthermore,the post-processing methods for improving the performance of L AM-processed Ti alloys,including conventional and novel heat treatment,hot isostatic pressing,and surface processing(e.g.,ultrasonic and laser shot peening),will be systematically reviewed and discussed.The review summarizes the process windows,properties,and performance envelopes and benchmarks the research achievements in LAM of Ti alloys.The outlooks of further trends in LAM of Ti alloys are also highlighted at the end of the review.This comprehensive review could serve as a valuable resource for researchers and practitioners,promoting further advancements in LAM-built Ti alloys and their applications.
基金supported by National Natural Science Foundation of China(62072416)Key Research and Development Special Project of Henan Province(221111210500)Key TechnologiesR&DProgram of Henan rovince(232102211053,242102211071).
文摘The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profiles:explicit feedback(interactive behavior),which significantly influences users’short-term interests,and implicit feedback(viewing time),which substantially affects their long-term interests.However,the previous model fails to distinguish between these two feedback methods,leading it to predict only the overall preferences of users based on extensive historical behavior sequences.Consequently,it cannot differentiate between users’long-term and shortterm interests,resulting in low accuracy in describing users’interest states and predicting the evolution of their interests.This paper introduces a video recommendationmodel calledCAT-MFRec(CrossAttention Transformer-Mixed Feedback Recommendation)designed to differentiate between explicit and implicit user feedback within the DIEN(Deep Interest Evolution Network)framework.This study emphasizes the separate learning of the two types of behavioral feedback,effectively integrating them through the cross-attention mechanism.Additionally,it leverages the long sequence dependence capabilities of Transformer technology to accurately construct user interest profiles and predict the evolution of user interests.Experimental results indicate that CAT-MF Rec significantly outperforms existing recommendation methods across various performance indicators.This advancement offers new theoretical and practical insights for the development of video recommendations,particularly in addressing complex and dynamic user behavior patterns.
基金Shenzhen Science and Technology Programme,Grant/Award Number:JCYJ202308071208000012023 Shenzhen sustainable supporting funds for colleges and universities,Grant/Award Number:20231121165240001Guangdong Provincial Key Laboratory of Ultra High Definition Immersive Media Technology,Grant/Award Number:2024B1212010006。
文摘Internal learning-based video inpainting methods have shown promising results by exploiting the intrinsic properties of the video to fill in the missing region without external dataset supervision.However,existing internal learning-based video inpainting methods would produce inconsistent structures or blurry textures due to the insufficient utilisation of motion priors within the video sequence.In this paper,the authors propose a new internal learning-based video inpainting model called appearance consistency and motion coherence network(ACMC-Net),which can not only learn the recurrence of appearance prior but can also capture motion coherence prior to improve the quality of the inpainting results.In ACMC-Net,a transformer-based appearance network is developed to capture global context information within the video frame for representing appearance consistency accurately.Additionally,a novel motion coherence learning scheme is proposed to learn the motion prior in a video sequence effectively.Finally,the learnt internal appearance consistency and motion coherence are implicitly propagated to the missing regions to achieve inpainting well.Extensive experiments conducted on the DAVIS dataset show that the proposed model obtains the superior performance in terms of quantitative measurements and produces more visually plausible results compared with the state-of-the-art methods.
文摘Airway management plays a crucial role in providing adequate oxygenation and ventilation to patients during various medical procedures and emergencies.When patients have a limited mouth opening due to factors such as trauma,inflammation,or anatomical abnormalities airway management becomes challenging.A commonly utilized method to overcome this challenge is the use of video laryngoscopy(VL),which employs a specialized device equipped with a camera and a light source to allow a clear view of the larynx and vocal cords.VL overcomes the limitations of direct laryngoscopy in patients with limited mouth opening,enabling better visualization and successful intubation.Various types of VL blades are available.We devised a novel flangeless video laryngoscope for use in patients with a limited mouth opening and then tested it on a manikin.
文摘Semantic segmentation is a core task in computer vision that allows AI models to interact and understand their surrounding environment. Similarly to how humans subconsciously segment scenes, this ability is crucial for scene understanding. However, a challenge many semantic learning models face is the lack of data. Existing video datasets are limited to short, low-resolution videos that are not representative of real-world examples. Thus, one of our key contributions is a customized semantic segmentation version of the Walking Tours Dataset that features hour-long, high-resolution, real-world data from tours of different cities. Additionally, we evaluate the performance of open-vocabulary, semantic model OpenSeeD on our own custom dataset and discuss future implications.
文摘Objective: The purpose of this study was to evaluate health education using videos and leaflets for preconception care (PCC) awareness among adolescent females up to six months after the health education. Methods: The subjects were female university students living in the Kinki area. A longitudinal survey was conducted on 67 members in the intervention group, who received the health education, and 52 members in the control group, who did not receive the health education. The primary outcome measures were knowledge of PCC and the subscales of the Health Promotion Lifestyle Profile. Surveys were conducted before, after, and six months after the intervention in the intervention group, and an initial survey and survey six months later were conducted in the control group. Cochran’s Q test, Bonferroni’s multiple comparison test, and McNemar’s test were used to analyze the knowledge of PCC data. The Health Awareness, Nutrition, and Stress Management subscales of the Health Promotion Lifestyle Profile were analyzed by paired t-test, and comparisons between the intervention and control groups were performed using the two-way repeated measures analysis of variance. Results: In the intervention group of 67 people, the number of subjects who answered “correct” for five of the nine items concerning knowledge of PCC increased immediately after the health education (P = 0.006) but decreased for five items from immediately after the health education to six months later (P = 0.043). In addition, the number of respondents who answered “correct” for “low birth weight infants and future lifestyle-related diseases” (P = 0.016) increased after six months compared with before the health education. For the 52 subjects in the control group, there was no change in the number of subjects who answered “correct” for eight out of the nine items after six months. There was also no increase in scores for the Health Promotion Lifestyle Profile after six months for either the intervention or control group. Conclusion: Providing health education about PCC using videos and leaflets to adolescent females was shown to enhance the knowledge of PCC immediately after the education.
基金supported by the National Natural Science Foundation of China (Nos. NSFC 61925105, 62322109, 62171257 and U22B2001)the Xplorer Prize in Information and Electronics technologiesthe Tsinghua University (Department of Electronic Engineering)-Nantong Research Institute for Advanced Communication Technologies Joint Research Center for Space, Air, Ground and Sea Cooperative Communication Network Technology
文摘Multimedia semantic communication has been receiving increasing attention due to its significant enhancement of communication efficiency.Semantic coding,which is oriented towards extracting and encoding the key semantics of video for transmission,is a key aspect in the framework of multimedia semantic communication.In this paper,we propose a facial video semantic coding method with low bitrate based on the temporal continuity of video semantics.At the sender’s end,we selectively transmit facial keypoints and deformation information,allocating distinct bitrates to different keypoints across frames.Compressive techniques involving sampling and quantization are employed to reduce the bitrate while retaining facial key semantic information.At the receiver’s end,a GAN-based generative network is utilized for reconstruction,effectively mitigating block artifacts and buffering problems present in traditional codec algorithms under low bitrates.The performance of the proposed approach is validated on multiple datasets,such as VoxCeleb and TalkingHead-1kH,employing metrics such as LPIPS,DISTS,and AKD for assessment.Experimental results demonstrate significant advantages over traditional codec methods,achieving up to approximately 10-fold bitrate reduction in prolonged,stable head pose scenarios across diverse conversational video settings.
文摘Objectives:Medical students often rely on recreational internet media to relieve the stress caused by immense academic and life pressures,and among these media,short-form videos,which are an emerging digital medium,have gradually become the mainstream choice of students to relieve their stress.However,the addiction caused by their usage has attracted the widespread attention of both academia and society,which is why the purpose of this study is to systematically explore the underlying mechanisms that link perceived stress,entertainment gratification,emotional gratification,short-form video usage intensity,and short-form video addiction based on multiple theoretical frameworks including the Compensatory Internet Use Model(CIU),the Interaction of Person-Affect-Cognition-Execution Model(I-PACE),and the Use and Gratification Theory(UGT).Methods:A hypothetical model with 9 research hypotheses was constructed.Taking medical students from Chi-nese universities as the research subjects,1057 valid responses were collected through an online questionnaire survey,including 358 males and 658 females.Structural equation modelling(SEM)was performed using the AMOS software to test the research hypotheses.Results:(1)Perceived stress positively predicted entertainment gratification and emotional gratification(β=0.72,p<0.001;β=0.61,p<0.001);(2)Entertainment gratifi-cation and emotional gratification positively influenced short-form video usage intensity(β=0.35,p<0.001;β=0.19,p<0.001);(3)Entertainment gratification and emotional gratification positively predicted short-form video addiction(β=0.40,p<0.001;β=0.17,p<0.001);(4)Short-form video usage intensity positively influenced short-form video addiction(β=0.36,p<0.001);and(5)Perceived stress exerted an indirect but positive effect on both short-form video usage intensity and short-form video addiction,mediated by entertainment and emotional gratification(β=0.37,p<0.001;β=0.52,p<0.001).Conclusion:The mechanisms that underlie medical students’short-form video addiction in stressful situations were revealed in this study.It was found that stress enhances medical students’need for entertainment and emotional online compensation,prompting more frequent short-form video usage and ultimately leading to addiction.These results underscore the need to address the stressors faced by medical students.Effective interventions should prioritise stress management strategies and promote healthier alternative coping mechanisms to mitigate the risk of addiction.
基金supported by the International Joint Research Project of Huiyan International College,Faculty of Education,Beijing Normal University(Grant Number:ICER202102).
文摘Objectives:Short video addiction has emerged as a significant public health issue in recent years,with a growing trend toward severity.However,research on the causes and impacts of short video addiction remains limited,and understanding of the variable“TikTok brain”is still in its infancy.Therefore,based on the Stimulus-Organism-Behavior-Consequence(SOBC)framework,we proposed six research hypotheses and constructed a model to explore the relationships between short video usage intensity,TikTok brain,short video addiction,and decreased attention control.Methods:Given that students are considered a high-risk group for excessive short video use,we collected 1086 valid participants from Chinese student users,including 609 males(56.1%)and 477 females(43.9%),with an average participant age of 19.84 years,to test the hypotheses.Results:(1)Short video usage intensity was positively related to short video addiction,TikTok brain,and decreased attention control;(2)TikTok brain was positively related to short video addiction and decreased attention control;and(3)Short video addiction was positively related to decreased attention control.Conclusions:These findings suggest that although excessive use of short video applications brings negative consequences,users still spend significant amounts of time on these platforms,indicating a need for strict self-regulation of usage time.