本文简要介绍了日本道路交通信息管理系统(VICS:Vehicle Information and CommunicationSystem)的建设发起、法人构成、系统框架、运行模式等。VICS通过实时向公众发布道路交通信息,由驾车人自行选择道路等措施,较好地解决了道路交通中...本文简要介绍了日本道路交通信息管理系统(VICS:Vehicle Information and CommunicationSystem)的建设发起、法人构成、系统框架、运行模式等。VICS通过实时向公众发布道路交通信息,由驾车人自行选择道路等措施,较好地解决了道路交通中存在的问题。VICS的建设和运行的成功经验,对我国的智能道路建设有很好的借鉴意义,我国道路信息收集和发布等方面已具有了建立类似VICS的条件,有关部门应协手共建我国的智能交通系统(CITS:China Intelligent Transport System),提高道路设施的效能,缓解车辆拥挤状况,缩小与国际先进水平差距,使道路交通管理水平上一个新台阶。展开更多
VICS(Vehicle Information and Communication System)是一个数字数据通讯系统,主要用来通过车辆导航设备为驾驶员提供必要的实时交通信息。日本于1996年开通第一个VICS服务系统,VICS可根据驾驶员的需求,利用图形或者文字的方式提供...VICS(Vehicle Information and Communication System)是一个数字数据通讯系统,主要用来通过车辆导航设备为驾驶员提供必要的实时交通信息。日本于1996年开通第一个VICS服务系统,VICS可根据驾驶员的需求,利用图形或者文字的方式提供有关道路拥堵和各个区域的旅行时间等实时信息,主要是通过利用安装在路旁的信息标志以及车辆导航设备来完成,而利用FM调频广播的信息服务则覆盖了更大的领域和范围。展开更多
Understanding the evolution and lag effects of droughts is critical to effective drought warning and water resources management.However,due to limited hydrological data,few studies have examined hydrological droughts ...Understanding the evolution and lag effects of droughts is critical to effective drought warning and water resources management.However,due to limited hydrological data,few studies have examined hydrological droughts and their lag time from meteorological droughts at a daily scale.In this study,precipitation data were collected to calculate the standardized precipitation index(SPI),and runoff data simulated by the variable infiltration capacity(VIC)model were utilized to compute the standardized runoff index(SRI).The three-threshold run theory was used to identify drought characteristics in China.These drought characteristics were utilized to investigate spatiotemporal variations,seasonal trends,and temporal changes in areas affected by meteorological and hydrological droughts.Additionally,the interconnections and lag effects between meteorological and hydrological droughts were explored.The results indicated that(1)drought occurred during approximately 28%of the past 34 years in China;(2)drought conditions tended to worsen in autumn and weaken in winter;(3)drought-affected areas shifted from northwest to northeast and finally to southern China;and(4)the correlation between meteorological and hydrological droughts was lower in the northwest and higher in the southeast,with all correlation coefficients exceeding 0.7.The lag times between meteorological and hydrological droughts were longest(5 d)in the Yangtze River,Yellow River,and Hai River basins,and shortest(0 d)in the Tarim River Basin.This study provides a scientific basis for effective early warning of droughts.展开更多
This study aims to construct a large-scale hydrological Variable Infiltration Capacity(VIC)model based on temperature and precipitation at high altitudes,while elucidating the applicability of the model for hydrologic...This study aims to construct a large-scale hydrological Variable Infiltration Capacity(VIC)model based on temperature and precipitation at high altitudes,while elucidating the applicability of the model for hydrological simulation and analyzing the factors affecting runoff volume.Runoff volume and runoff depth were simulated using the VIC model and its performance was evaluated.Meanwhile,the factors affecting runoff volume were analyzed using Spearman correlation.The following model sensitivity parameters were obtained based on the China Natural Runoff Grid Point Dataset(CNRD v1.0):The variable infiltration curve parameter was 0.3,the Dsmax fraction where non-linear baseflow begins was 0.02,the maximum baseflow velocity was 15 mm/d,the maximum soil moisture where non-linear baseflow occurred was 0.7,the second soil moisture layer thickness was 0.3,and the thickness of the third soil moisture layer was 1.5.The surface runoff values in the Nyang River basin were similar in the first and fourth quarters(1.05–2.27 mm and 2.38–4.77 mm,respectively),and the surface runoff values were similar in the second and third quarters when the surface runoff was greater(23.46–52.20 mm and 60.59–85.63 mm,respectively).Watershed area,temperature,and precipitation significantly influenced the amount of runoff from the Nyang River.The applicability of the model to the Nyang River basin was confirmed using two different rate models.In some areas,precipitation and temperature did not have a dominating influence on runoff.Although the VIC model has significant advantages in runoff simulation,it requires a wealth of meteorological,soil,and hydrological data that may be difficult to obtain in some areas.展开更多
Climate change and human activities are primary drivers of runoff variations,significantly impacting the hydrological balance of river basins.In recent decades,the Yellow River Basin,China has experienced a marked dec...Climate change and human activities are primary drivers of runoff variations,significantly impacting the hydrological balance of river basins.In recent decades,the Yellow River Basin,China has experienced a marked decline in runoff,posing challenges to the sustainable development of regional water resources and ecosystem stability.To enhance the understanding of runoff dynamics in the basin,we selected the Dahei River Basin,a representative tributary in the upper reaches of the Yellow River Basin as the study area.A comprehensive analysis of runoff trends and contributing factors was conducted using the data on hydrology,meteorology,and water resource development and utilization.Abrupt change years of runoff series in the Dahei River Basin was identified by the Mann-Kendall and Pettitt tests:1999 at Dianshang,Qixiaying,and Meidai hydrological stations and 1995 at Sanliang hydrological station.Through hydrological simulations based on the Variable Infiltration Capacity(VIC)model,we quantified the factors driving runoff evolution in the Dahei River Basin,with climate change contributing 9.92%–22.91%and human activities contributing 77.09%–90.08%.The Budyko hypothesis method provided similar results,with climate change contributing 13.06%–20.89%and human activities contributing 79.11%–86.94%.Both methods indicated that human activities,particularly water consumption,were dominant factors in the runoff variations of the Dahei River Basin.The integration of hydrological modeling with attribution analysis offers valuable insights into runoff evolution,facilitating adaptive strategies to mitigate water scarcity in arid and semi-arid areas.展开更多
文摘本文简要介绍了日本道路交通信息管理系统(VICS:Vehicle Information and CommunicationSystem)的建设发起、法人构成、系统框架、运行模式等。VICS通过实时向公众发布道路交通信息,由驾车人自行选择道路等措施,较好地解决了道路交通中存在的问题。VICS的建设和运行的成功经验,对我国的智能道路建设有很好的借鉴意义,我国道路信息收集和发布等方面已具有了建立类似VICS的条件,有关部门应协手共建我国的智能交通系统(CITS:China Intelligent Transport System),提高道路设施的效能,缓解车辆拥挤状况,缩小与国际先进水平差距,使道路交通管理水平上一个新台阶。
文摘VICS(Vehicle Information and Communication System)是一个数字数据通讯系统,主要用来通过车辆导航设备为驾驶员提供必要的实时交通信息。日本于1996年开通第一个VICS服务系统,VICS可根据驾驶员的需求,利用图形或者文字的方式提供有关道路拥堵和各个区域的旅行时间等实时信息,主要是通过利用安装在路旁的信息标志以及车辆导航设备来完成,而利用FM调频广播的信息服务则覆盖了更大的领域和范围。
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC3006505)the Fundamental Research Funds for the Central Universities of China(Grant No.B240203007)the National Key Laboratory of Water Disaster Prevention(Grant No.524015222)。
文摘Understanding the evolution and lag effects of droughts is critical to effective drought warning and water resources management.However,due to limited hydrological data,few studies have examined hydrological droughts and their lag time from meteorological droughts at a daily scale.In this study,precipitation data were collected to calculate the standardized precipitation index(SPI),and runoff data simulated by the variable infiltration capacity(VIC)model were utilized to compute the standardized runoff index(SRI).The three-threshold run theory was used to identify drought characteristics in China.These drought characteristics were utilized to investigate spatiotemporal variations,seasonal trends,and temporal changes in areas affected by meteorological and hydrological droughts.Additionally,the interconnections and lag effects between meteorological and hydrological droughts were explored.The results indicated that(1)drought occurred during approximately 28%of the past 34 years in China;(2)drought conditions tended to worsen in autumn and weaken in winter;(3)drought-affected areas shifted from northwest to northeast and finally to southern China;and(4)the correlation between meteorological and hydrological droughts was lower in the northwest and higher in the southeast,with all correlation coefficients exceeding 0.7.The lag times between meteorological and hydrological droughts were longest(5 d)in the Yangtze River,Yellow River,and Hai River basins,and shortest(0 d)in the Tarim River Basin.This study provides a scientific basis for effective early warning of droughts.
基金supported by the Key R&D Project of Science and Technology Program of Tibet Autonomous Region(XZ202301ZY0006G)the Graduate High-level Talent Training Program of Xizang University(2022-GSP-B007)+1 种基金Nagqu City Science and Technology Program Key R&D Projects(NQKJ-2023-15)Central Financial Support for Local Universities to Construct Wetland Station in Mitika and Collaborative Innovation Center for Ecological Civilization of the Qinghai-Tibetan Plateau([2024]NO.01).
文摘This study aims to construct a large-scale hydrological Variable Infiltration Capacity(VIC)model based on temperature and precipitation at high altitudes,while elucidating the applicability of the model for hydrological simulation and analyzing the factors affecting runoff volume.Runoff volume and runoff depth were simulated using the VIC model and its performance was evaluated.Meanwhile,the factors affecting runoff volume were analyzed using Spearman correlation.The following model sensitivity parameters were obtained based on the China Natural Runoff Grid Point Dataset(CNRD v1.0):The variable infiltration curve parameter was 0.3,the Dsmax fraction where non-linear baseflow begins was 0.02,the maximum baseflow velocity was 15 mm/d,the maximum soil moisture where non-linear baseflow occurred was 0.7,the second soil moisture layer thickness was 0.3,and the thickness of the third soil moisture layer was 1.5.The surface runoff values in the Nyang River basin were similar in the first and fourth quarters(1.05–2.27 mm and 2.38–4.77 mm,respectively),and the surface runoff values were similar in the second and third quarters when the surface runoff was greater(23.46–52.20 mm and 60.59–85.63 mm,respectively).Watershed area,temperature,and precipitation significantly influenced the amount of runoff from the Nyang River.The applicability of the model to the Nyang River basin was confirmed using two different rate models.In some areas,precipitation and temperature did not have a dominating influence on runoff.Although the VIC model has significant advantages in runoff simulation,it requires a wealth of meteorological,soil,and hydrological data that may be difficult to obtain in some areas.
基金supported by the National Key Research and Development Program of China(2022YFC3204401)the National Natural Science Foundation of China(U23A2001,U2243234)+2 种基金the Major Science and Technology Projects of Inner Mongolia Autonomous Region(KCX2024013-1,2022EEDSKJXM005)the Inner Mongolia Autonomous Region Science and Technology Leading Talent Team(2022LJRC0007)the Inner Mongolia Agricultural University Basic Research Business Expenses Project(BR221012,BR221204).
文摘Climate change and human activities are primary drivers of runoff variations,significantly impacting the hydrological balance of river basins.In recent decades,the Yellow River Basin,China has experienced a marked decline in runoff,posing challenges to the sustainable development of regional water resources and ecosystem stability.To enhance the understanding of runoff dynamics in the basin,we selected the Dahei River Basin,a representative tributary in the upper reaches of the Yellow River Basin as the study area.A comprehensive analysis of runoff trends and contributing factors was conducted using the data on hydrology,meteorology,and water resource development and utilization.Abrupt change years of runoff series in the Dahei River Basin was identified by the Mann-Kendall and Pettitt tests:1999 at Dianshang,Qixiaying,and Meidai hydrological stations and 1995 at Sanliang hydrological station.Through hydrological simulations based on the Variable Infiltration Capacity(VIC)model,we quantified the factors driving runoff evolution in the Dahei River Basin,with climate change contributing 9.92%–22.91%and human activities contributing 77.09%–90.08%.The Budyko hypothesis method provided similar results,with climate change contributing 13.06%–20.89%and human activities contributing 79.11%–86.94%.Both methods indicated that human activities,particularly water consumption,were dominant factors in the runoff variations of the Dahei River Basin.The integration of hydrological modeling with attribution analysis offers valuable insights into runoff evolution,facilitating adaptive strategies to mitigate water scarcity in arid and semi-arid areas.