Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infr...Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infrared spectroscopy,modification of chemical reactions,and exploration of nonlinear quantum effects.Surface plasmon resonance,excited on simple plasmonic resonators in the infrared,has been demonstrated as a means to realize VSC,but suffers from either limited quality factor for realizing large Rabi splitting or poor reconfigurability for precise detuning control.Here we propose and experimentally demonstrate,for the first time,an on-chip plasmonic resonator based on degeneracy breaking of Wood’s anomaly for VSC.Leveraging the low damping rate of the surface state induced by this degeneracy breaking,we achieve a plasmonic resonance with a high-Q factor exceeding~110,resulting in a Rabi splitting up to~112 cm^(-1) with a subwavelength molecular layer.Additionally,the dispersion of the surface state allows for precise control over VSC detuning by simply adjusting the incident angle of excitation light,even in the absence of photons,enabling a broad detuning range up to 300 cm^(-1).These experimental results align well with our analytical model and numerical simulation.This work provides a promising integrated platform for VSC,with various potential applications in on-chip spectroscopy,polariton chemistry,and polariton devices.展开更多
Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling s...Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling system(TBCS)under earthquake(MAETB)is developed based on the cooperative work of MATLAB and ANSYS.The simulation system is used to analyze the dynamic parameters of the TBCS of a prestressed concrete continuous rigid frame bridge benchmark model of a heavy-haul railway.The influence of different driving speeds,seismic wave intensities,and traveling wave effects on the dynamic response of the TBCS under the actions of the earthquakes is discussed.The results show that the bridge displacement increase in magnitude in the lateral direction is more significant than in the vertical direction under the action of an earthquake.The traveling wave effect can significantly reduce the lateral response of the bridge,but it will significantly increase the train derailment coefficient.When the earthquake intensity exceeds 0.2 g,the partial derailment coefficient of the train has exceeded the limit value of the specification.展开更多
Considering the dynamic variation of roll gap and the transverse distribution of dynamic rolling force along the work roll width direction, the movement and deformation of rolls system, influenced by the coupling of v...Considering the dynamic variation of roll gap and the transverse distribution of dynamic rolling force along the work roll width direction, the movement and deformation of rolls system, influenced by the coupling of vertical chatter and transverse bending vibration, may cause instability and also bring product defect of thickness difference. Therefore, a rigid-flexible coupling vibration model of the rolls system was presented. The influence of dynamic characteristics on the rolling process stability and strip thickness distribution was investigated. Firstly, assuming the symmetry of upper and lower structures of six-high rolling mill, a transverse bending vibration model of three-beam system under simply supported boundary conditions was established, and a semi-analytical solution method was proposed to deal with this model. Then, considering both variation and change rate of the roll gap, a roll vertical chatter model with structure and process coupled was constructed, and the critical rolling speed for self-excited instability was determined by Routh stability criterion. Furthermore, a rigid-flexible coupling vibration model of the rolls system was built by connecting the vertical chatter model and transverse bending vibration model through the distribution of dynamic rolling force, and the dynamic characteristics of rolls system were analyzed. Finally, the strip exit thickness distributions under the stable and unstable rolling process were compared, and the product shape and thickness distribution characteristics were quantitatively evaluated by the crown and maximum longitudinal thickness difference.展开更多
Aerodynamic and dynamic interference from trains is a key issue of concern for the safety of road vehicles travelling on single-level rail-cum road bridges.Based on the wind-road vehicle-train-bridge(WRTB)coupled vibr...Aerodynamic and dynamic interference from trains is a key issue of concern for the safety of road vehicles travelling on single-level rail-cum road bridges.Based on the wind-road vehicle-train-bridge(WRTB)coupled vibration system developed herein,this study examines the dynamic characteristics when road vehicles meet trains in this situation.The influence of load combination,vehicle type and vehicle location is analyzed.A method to obtain the aerodynamic load of road vehicles encountering the train at an arbitrary wind speed is proposed.The results show that due to the windproof facilities and the large line distance between the railway and highway,the aerodynamic and dynamic influence of trains on road vehicles is slight,and the vibration of road vehicles depends on the road roughness.Among the road vehicles discussed,the bus is the easiest to rollover,and the truck-trailer is the easiest to sideslip.Compared with the aerodynamic impact of trains,the crosswind has a more significant influence on road vehicles.The first peak/valley value of aerodynamic loads determines the maximum dynamic response,and the quick method is optimized based on this conclusion.Test cases show that the optimized method can produce conservative results and can be used for relevant research or engineering applications.展开更多
Aerodynamic and dynamic interference between the railway and highway are two major issues that influence travel safety on single-level rail-cum-road bridges.Based on a computational fluid dynamics simulation and vehic...Aerodynamic and dynamic interference between the railway and highway are two major issues that influence travel safety on single-level rail-cum-road bridges.Based on a computational fluid dynamics simulation and vehicle-bridge coupled vibration system,this research explores the dynamic response of a moving van encountering travelling trains on a typical single-level rail-cum-road bridge.The relationship between the line distance of the railway and highway and the dynamic response of the van is discussed.The study reveals that the vertical response of the van is primarily governed by the coupled vibration of the vehicle-bridge system and road roughness,with minimal impact from the line distance.The aerodynamic impact of the train-induced wind significantly influences the lateral,yawing and rolling responses,and the line distance also affects the vehicle’s behavior,with decreasing distance leading to increased response.Among them,the yawing vibration is the most influential.The relationship between the maximum dynamic response and line distance is quantitatively analyzed using the proposed fitting formulas,which perform well on the lateral,rolling and yawing response and shows higher accuracy for acceleration compared to velocity and displacement.Relevant results could provide help on optimizing the arrangement of bridge deck.展开更多
Ultrasonic vibration-assisted grinding(UVAG)is an effective and promising method for machining of hard-to-cut materials.This article proposed an ultrasonic vibration plate device enabling the longitudinal full-wave an...Ultrasonic vibration-assisted grinding(UVAG)is an effective and promising method for machining of hard-to-cut materials.This article proposed an ultrasonic vibration plate device enabling the longitudinal full-wave and transverse half-wave(L2T1)vibration mode for UVAG.The characteristics of two-dimensional coupled vibration in different directions were analyzed on the basis of apparent elastic method and finite element method.Furthermore,a correction factor was applied to correct the frequency error caused by the apparent elastic method.Finally,the comparative experiments between the conventional creep-feed grinding and UVAG of Inconel 718 nickel-based superalloy were carried out.The results indicate that the apparent elastic method with the correction factor is accurate for the design of plate device under the L2T1 vibration mode.Compared with the conventional creep-feed grinding,the UVAG causes the reduction of grinding force and the improvement of machined surface quality of Inconel 718 nickel-based superalloy.Furthermore,under the current experimental conditions,the optimal ultrasonic vibration amplitude is determined as 6μm,with which the minimum surface roughness is achieved.展开更多
The risk of failure of the control loop can occur when a high-speed maglev train runs on viaduct.Meanwhile,the failure of the levitation magnets which balances the gravity of the maglev train could cause the train col...The risk of failure of the control loop can occur when a high-speed maglev train runs on viaduct.Meanwhile,the failure of the levitation magnets which balances the gravity of the maglev train could cause the train collision with track.To study the dynamic response of the train and the viaduct when the levitation magnet control loop failure occurs,a high-speed maglev train-viaduct coupling model,which includes a maglev controller fitted by measured force-gap data and considers the actual structure of train and viaduct,is established.Then the accuracy and effectiveness of the established approach are validated by comparing the computed dynamic responses and frequencies with the measurement results.After that,the dynamic responses of maglev train and viaduct are discussed under normal operation and control loop failures,and the most disadvantageous combination of control loop failures is obtained.The results show that when a single control loop fails,it only has a great influence on the failed electromagnet,and the maglev response of adjacent electromagnets has no obvious change and no collision occurs.But there is a risk of rail collisions when the dual control loop fails.展开更多
On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches i...On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed.展开更多
The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are ca...The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are calculated. Secondly, the influences to runner frequency domain by large flow, small flow and design flow working conditions are compared. Finally the influences to runner modes by centrifugal forces under three rotating speeds of 400 r/rain, 500 r/min and 600 r/rain are compared. The centrifugal force and small flow working condition have greatly influence on the vibration of small runner. With the increase of centrifugal force, the vibration frequency of the runner is sharply increased. Some order frequencies are even close to the runner natural frequency in the air. Because the low frequency vibration will severely damage the stability of the turbine, low frequency vibration of units should be avoided as soon as possible.展开更多
In recent years,high-speed railways in China have developed very rapidly,and the number and span of the railway bridges are keeping increasing.Meanwhile,frequent extreme disasters,such as strong winds,earthquakes and ...In recent years,high-speed railways in China have developed very rapidly,and the number and span of the railway bridges are keeping increasing.Meanwhile,frequent extreme disasters,such as strong winds,earthquakes and floods,pose a significant threat to the safety of the train–bridge systems.Therefore,it is of paramount importance to evaluate the safety and comfort of trains when crossing a bridge under external excitations.In these aspects,there is abundant research but lacks a literature review.Therefore,this paper provides a comprehensive state-of-the-art review of research works on train–bridge systems under external excitations,which includes crosswinds,waves,collision loads and seismic loads.The characteristics of external excitations,the models of the train–bridge systems under external excitations,and the representative research results are summarized and analyzed.Finally,some suggestions for further research of the coupling vibration of train–bridge system under external excitations are presented.展开更多
On the basis of Hamilton principle. the equation of sonlid-liquid coupling vibration of pipe conveying fluid is deduced. An asymmetrical sonlid-liquid coupling damp matrix and a symmetrical solid-liquid coupling Sti...On the basis of Hamilton principle. the equation of sonlid-liquid coupling vibration of pipe conveying fluid is deduced. An asymmetrical sonlid-liquid coupling damp matrix and a symmetrical solid-liquid coupling Stiffness matrix are obtained. Using QR method , pipe’s nature frequencies are calculated. The curves of the first four orders of natural frequency-flow velocity of pipe waw given .The influence of flowing velocity ,pressure, solid-liquid coupling damp and solid-liquid coupling stiffness on natural frequency are discussed respectively.The dynamic respondence of the pipes for stepload with different flow velocity are calculated by Newmark method .It is found that,with the flow velocity increased, the nature frequency of the pipes reduced, increased,reduced again and so on.展开更多
The vibrational frequency analysis of finite elastic tube filled with compressible viscous fluid has received plenty of attention in recent years. To apply frequency analysis to defect detection for example, it is nec...The vibrational frequency analysis of finite elastic tube filled with compressible viscous fluid has received plenty of attention in recent years. To apply frequency analysis to defect detection for example, it is necessary to investigate the vibrational behavior under appropriate boundary conditions. In this paper, we present a detailed theoretical study of the three dimensional modal analysis of compressible fluid within an elastic cylinder. The dispersion equations of flexura], torsional and longitudinal modes are derived by elastodynamic theory and the unsteady Stokes equation. The symbolic software Mathematica is used in order to find the coupled vibration frequencies. The dispersion equation is deduced and analytically solved. The finite element results are compared with the present method for validation and an acceptable match between them are obtained.展开更多
The nonlinear modal coupling in a T-shaped piezoelectric resonator,when the former two natural frequencies are away from 1:2,is studied.Experimentally sweeping up the exciting frequency shows that the horizontal beam ...The nonlinear modal coupling in a T-shaped piezoelectric resonator,when the former two natural frequencies are away from 1:2,is studied.Experimentally sweeping up the exciting frequency shows that the horizontal beam exhibits a nonlinear hardening behavior.The first primary resonance of the vertical beam,owing to modal coupling,exhibits an abrupt amplitude increase,namely the Hopf bifurcation.The frequency comb phenomenon induced by modal coupling is measured experimentally.A Duffing-Mathieu coupled model is theoretically introduced to derive the conditions of the modal coupling and frequency comb phenomenon.The results demonstrate that the modal coupling results from nonlinear stiffness hardening and is strictly dependent on the loading range and sweeping form of the driving voltage and the frequency of the piezoelectric patches.展开更多
A nonlinear model of a low pressure cylinder-generator rotor system is presented to study sub-synchronous resonance and combined resonance. Analytical results are obtained by an averaging method. Transition sets and b...A nonlinear model of a low pressure cylinder-generator rotor system is presented to study sub-synchronous resonance and combined resonance. Analytical results are obtained by an averaging method. Transition sets and bifurcation diagrams are obtained based on the singularity theory for the two-state variable system. The bifurcation characteristics are analyzed to provide a basis for the optimal design and fault diagnosis of the rotor system. Finally, the theoretical results are verified with the numerical results.展开更多
By applying the sinusoidal wave mode to simulate the rugged surface of bridge deck,accounting for vehicle-bridge interaction and using Euler-Bernoulli beam theory, a coupling vibration model of vehicle-bridge system w...By applying the sinusoidal wave mode to simulate the rugged surface of bridge deck,accounting for vehicle-bridge interaction and using Euler-Bernoulli beam theory, a coupling vibration model of vehicle-bridge system was developed. The model was solved by mode analyzing method and Runge-Kutta method, and the dynamic response and the resonance curve of the bridge were obtained. It is found that there are two resonance regions, one represents the main resonance while the other the minor resonance, in the resonance curve. The influence due to the rugged surface, the vibration mode of bridge, and the interaction between vehicle and bridge on vibration of the system were discussed. Numerical results show that the influence due to these parameters is so significant that the effect of roughness of the bridge deck and the mode shape of the bridge can't be ignored and the vehicle velocity should be kept away from the critical speed of the vehicle.展开更多
Experimental vibrational spectra of heavy light XH stretching vibrations of simple molecules have been analyzed using the local mode model.In addition,the bond dipole approach,which assumes that the transition dipole ...Experimental vibrational spectra of heavy light XH stretching vibrations of simple molecules have been analyzed using the local mode model.In addition,the bond dipole approach,which assumes that the transition dipole moment(TDM)of the XH stretching mode is aligned along the XH bond,has helped analyze experimental spectra.We performed theoretical calculations of the XH stretching vibrations of HOD,HND^−,HCD,HSD,HPD^−,and HSiD using local mode model and multi-dimensional normal modes.We found that consistent with previous notions,a localized 1D picture to treat the XH stretching vibration is valid even for analyzing the TDM tilt angle.In addition,while the TDM of the OH stretching fundamental transition tilted away from the OH bond in the direction away from the OD bond,that for the XH stretching fundamental of HSD,HND^−,HPD^−,HCD,and HSiD tilted away from the OH bond but toward the OD bond.This shows that bond dipole approximation may not be a good approximation for the present systems and that the heavy atom X can affect the transition dipole moment direction.The variation of the dipole moment was analyzed using the atoms-in-molecule method.展开更多
The governing equation and energy equations for thermal-elastic coupling vibration of cylindrical shell were developed. The Garlerkin method was used in numerical process. Some useful result can be concluded from nume...The governing equation and energy equations for thermal-elastic coupling vibration of cylindrical shell were developed. The Garlerkin method was used in numerical process. Some useful result can be concluded from numerical result. With the increase of the amplitude of temperature and coupling coefficient, the speed of vibration decaying becomes slower and the coupling effect becomes weaker. The larger the ration of length to radius and length to thickness, the faster the decaying of the vibration amplitude and the vibration frequency increase. It means the coupling effect gets stronger. The larger the coupling coefficient, the smaller the axial stress, the axial force and the bendind moment are.展开更多
The response of fuel-tank-sloshing to aircraft maneuver is a difficult mathematical problem to be solved. Beginning with setting up the mechanical model and the respective mathematical model, this paper uses both F.E....The response of fuel-tank-sloshing to aircraft maneuver is a difficult mathematical problem to be solved. Beginning with setting up the mechanical model and the respective mathematical model, this paper uses both F.E. and B.E.M. to imitate the sloshing process. The paper has developed some special techniques to deal with strong nonlinear characteristics, and provided satisfactory numerical results of displacements and stress for low frequency, resonance, high frequency and fuel tank dynamic response characteristics. The program not only assures convergence and stability of the solution, but also has the function of graphic display. It is a valuable technique to deal with the strong nonlinear oscillation of fuel tank with large amplitude and moving boundary condition on free surface.展开更多
The nonlinear dynamic model of the marine diesel crankshaft system with a propeller and 6 cranks is established, in which the variable moment of inertia of the linkage and the piston, coupling effect between torsional...The nonlinear dynamic model of the marine diesel crankshaft system with a propeller and 6 cranks is established, in which the variable moment of inertia of the linkage and the piston, coupling effect between torsional and axial vibration, the actuating force applied on the piston, the actuating torque and force applied on the propeller is included. The governing equations of the model denote a strong nonlinear and non autonomous system. By numeric simulation, the dynamic response of the system to initial displacement and initial speed, variable moment of inertia, the pressure applied on the piston by combustion gas, the torque and the axial force applied on the propeller by fluid is researched respectively. According to the research results, the variable moment of inertia and coupling effect between torsional and axial vibration are the fundamental reason for nonlinear vibration. Different actuating factors can not only result in different frequency components of the response, but make the same frequency component have different vibration amplitude. The dynamic behavior of the system is not influenced obviously by the actuating torque and force applied on the propeller. There is obvious difference in sensitivity of the dynamic response in the different direction to the same actuating factor.展开更多
A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu...A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2024YFE0105200)the National Nature Science Foundation of China(Grant No.62405284)+2 种基金the Key Research and Development Program of Henan Province(Grant No.241111220600)the JSPS KAKENHI(Grant No.JP20K14785)the Murata Science Foundation.
文摘Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infrared spectroscopy,modification of chemical reactions,and exploration of nonlinear quantum effects.Surface plasmon resonance,excited on simple plasmonic resonators in the infrared,has been demonstrated as a means to realize VSC,but suffers from either limited quality factor for realizing large Rabi splitting or poor reconfigurability for precise detuning control.Here we propose and experimentally demonstrate,for the first time,an on-chip plasmonic resonator based on degeneracy breaking of Wood’s anomaly for VSC.Leveraging the low damping rate of the surface state induced by this degeneracy breaking,we achieve a plasmonic resonance with a high-Q factor exceeding~110,resulting in a Rabi splitting up to~112 cm^(-1) with a subwavelength molecular layer.Additionally,the dispersion of the surface state allows for precise control over VSC detuning by simply adjusting the incident angle of excitation light,even in the absence of photons,enabling a broad detuning range up to 300 cm^(-1).These experimental results align well with our analytical model and numerical simulation.This work provides a promising integrated platform for VSC,with various potential applications in on-chip spectroscopy,polariton chemistry,and polariton devices.
基金funded by the Open Projects Foundation of Engineering Research Center of Disaster Prevention and Mitigation of Southeast Coastal Engineering Structures of Fujian Province University(Grant No.2022009)the National Natural Science Foundation of China(Grant No.51708429)the Construction Science and Technology Plan Projects of Hubei Province(Grant No.2023011).
文摘Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling system(TBCS)under earthquake(MAETB)is developed based on the cooperative work of MATLAB and ANSYS.The simulation system is used to analyze the dynamic parameters of the TBCS of a prestressed concrete continuous rigid frame bridge benchmark model of a heavy-haul railway.The influence of different driving speeds,seismic wave intensities,and traveling wave effects on the dynamic response of the TBCS under the actions of the earthquakes is discussed.The results show that the bridge displacement increase in magnitude in the lateral direction is more significant than in the vertical direction under the action of an earthquake.The traveling wave effect can significantly reduce the lateral response of the bridge,but it will significantly increase the train derailment coefficient.When the earthquake intensity exceeds 0.2 g,the partial derailment coefficient of the train has exceeded the limit value of the specification.
基金supported by the National Natural Science Foundation of China(No.51775038).
文摘Considering the dynamic variation of roll gap and the transverse distribution of dynamic rolling force along the work roll width direction, the movement and deformation of rolls system, influenced by the coupling of vertical chatter and transverse bending vibration, may cause instability and also bring product defect of thickness difference. Therefore, a rigid-flexible coupling vibration model of the rolls system was presented. The influence of dynamic characteristics on the rolling process stability and strip thickness distribution was investigated. Firstly, assuming the symmetry of upper and lower structures of six-high rolling mill, a transverse bending vibration model of three-beam system under simply supported boundary conditions was established, and a semi-analytical solution method was proposed to deal with this model. Then, considering both variation and change rate of the roll gap, a roll vertical chatter model with structure and process coupled was constructed, and the critical rolling speed for self-excited instability was determined by Routh stability criterion. Furthermore, a rigid-flexible coupling vibration model of the rolls system was built by connecting the vertical chatter model and transverse bending vibration model through the distribution of dynamic rolling force, and the dynamic characteristics of rolls system were analyzed. Finally, the strip exit thickness distributions under the stable and unstable rolling process were compared, and the product shape and thickness distribution characteristics were quantitatively evaluated by the crown and maximum longitudinal thickness difference.
基金The Research Project of Southwest Municipal Design&Research Institute of China under Grant No.2023KY-KT-02-I。
文摘Aerodynamic and dynamic interference from trains is a key issue of concern for the safety of road vehicles travelling on single-level rail-cum road bridges.Based on the wind-road vehicle-train-bridge(WRTB)coupled vibration system developed herein,this study examines the dynamic characteristics when road vehicles meet trains in this situation.The influence of load combination,vehicle type and vehicle location is analyzed.A method to obtain the aerodynamic load of road vehicles encountering the train at an arbitrary wind speed is proposed.The results show that due to the windproof facilities and the large line distance between the railway and highway,the aerodynamic and dynamic influence of trains on road vehicles is slight,and the vibration of road vehicles depends on the road roughness.Among the road vehicles discussed,the bus is the easiest to rollover,and the truck-trailer is the easiest to sideslip.Compared with the aerodynamic impact of trains,the crosswind has a more significant influence on road vehicles.The first peak/valley value of aerodynamic loads determines the maximum dynamic response,and the quick method is optimized based on this conclusion.Test cases show that the optimized method can produce conservative results and can be used for relevant research or engineering applications.
基金Associate Professor Training Project of Nanning University-“Research on the Full-Cycle Rapid Modeling Method of Bridges Based on‘BIM+’Technology”under Grant No.2021JSGC17Guangxi Science and Technology Planning Project:Construction of China ASEAN International Joint Laboratory for Comprehensive Transportation under Grant No.GUIKE AD20297125Basic Ability Promotion Project for Young and Middle-Aged Teachers in Guangxi Universities under Grant No.2019KY0929。
文摘Aerodynamic and dynamic interference between the railway and highway are two major issues that influence travel safety on single-level rail-cum-road bridges.Based on a computational fluid dynamics simulation and vehicle-bridge coupled vibration system,this research explores the dynamic response of a moving van encountering travelling trains on a typical single-level rail-cum-road bridge.The relationship between the line distance of the railway and highway and the dynamic response of the van is discussed.The study reveals that the vertical response of the van is primarily governed by the coupled vibration of the vehicle-bridge system and road roughness,with minimal impact from the line distance.The aerodynamic impact of the train-induced wind significantly influences the lateral,yawing and rolling responses,and the line distance also affects the vehicle’s behavior,with decreasing distance leading to increased response.Among them,the yawing vibration is the most influential.The relationship between the maximum dynamic response and line distance is quantitatively analyzed using the proposed fitting formulas,which perform well on the lateral,rolling and yawing response and shows higher accuracy for acceleration compared to velocity and displacement.Relevant results could provide help on optimizing the arrangement of bridge deck.
基金financially supported by the National Natural Science Foundation of China(Nos.51921003 and 51775275)National Key Laboratory of Science and Technology on Helicopter Transmission(Nanjing University of Aeronautics and Astronautics)(No.HTL-A-20G01)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX20_0179)。
文摘Ultrasonic vibration-assisted grinding(UVAG)is an effective and promising method for machining of hard-to-cut materials.This article proposed an ultrasonic vibration plate device enabling the longitudinal full-wave and transverse half-wave(L2T1)vibration mode for UVAG.The characteristics of two-dimensional coupled vibration in different directions were analyzed on the basis of apparent elastic method and finite element method.Furthermore,a correction factor was applied to correct the frequency error caused by the apparent elastic method.Finally,the comparative experiments between the conventional creep-feed grinding and UVAG of Inconel 718 nickel-based superalloy were carried out.The results indicate that the apparent elastic method with the correction factor is accurate for the design of plate device under the L2T1 vibration mode.Compared with the conventional creep-feed grinding,the UVAG causes the reduction of grinding force and the improvement of machined surface quality of Inconel 718 nickel-based superalloy.Furthermore,under the current experimental conditions,the optimal ultrasonic vibration amplitude is determined as 6μm,with which the minimum surface roughness is achieved.
基金Project(2021zzts0775) supported by the Independent Exploration and Innovation Project for Graduate Students of Central South University,ChinaProject(2021JJ30053) supported by the Hunan Natural Science Foundation,China。
文摘The risk of failure of the control loop can occur when a high-speed maglev train runs on viaduct.Meanwhile,the failure of the levitation magnets which balances the gravity of the maglev train could cause the train collision with track.To study the dynamic response of the train and the viaduct when the levitation magnet control loop failure occurs,a high-speed maglev train-viaduct coupling model,which includes a maglev controller fitted by measured force-gap data and considers the actual structure of train and viaduct,is established.Then the accuracy and effectiveness of the established approach are validated by comparing the computed dynamic responses and frequencies with the measurement results.After that,the dynamic responses of maglev train and viaduct are discussed under normal operation and control loop failures,and the most disadvantageous combination of control loop failures is obtained.The results show that when a single control loop fails,it only has a great influence on the failed electromagnet,and the maglev response of adjacent electromagnets has no obvious change and no collision occurs.But there is a risk of rail collisions when the dual control loop fails.
基金National Hi-tech Research and Development Program of China(863 Program,No.2008AA04Z116)and Natural Science Foundation of Hunan Province,China.
文摘On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed.
基金Outstanding Youth Science Fund Subsidization of Sichuan Province, China (No. 05204033).
文摘The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are calculated. Secondly, the influences to runner frequency domain by large flow, small flow and design flow working conditions are compared. Finally the influences to runner modes by centrifugal forces under three rotating speeds of 400 r/rain, 500 r/min and 600 r/rain are compared. The centrifugal force and small flow working condition have greatly influence on the vibration of small runner. With the increase of centrifugal force, the vibration frequency of the runner is sharply increased. Some order frequencies are even close to the runner natural frequency in the air. Because the low frequency vibration will severely damage the stability of the turbine, low frequency vibration of units should be avoided as soon as possible.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51978589 and 51778544).
文摘In recent years,high-speed railways in China have developed very rapidly,and the number and span of the railway bridges are keeping increasing.Meanwhile,frequent extreme disasters,such as strong winds,earthquakes and floods,pose a significant threat to the safety of the train–bridge systems.Therefore,it is of paramount importance to evaluate the safety and comfort of trains when crossing a bridge under external excitations.In these aspects,there is abundant research but lacks a literature review.Therefore,this paper provides a comprehensive state-of-the-art review of research works on train–bridge systems under external excitations,which includes crosswinds,waves,collision loads and seismic loads.The characteristics of external excitations,the models of the train–bridge systems under external excitations,and the representative research results are summarized and analyzed.Finally,some suggestions for further research of the coupling vibration of train–bridge system under external excitations are presented.
文摘On the basis of Hamilton principle. the equation of sonlid-liquid coupling vibration of pipe conveying fluid is deduced. An asymmetrical sonlid-liquid coupling damp matrix and a symmetrical solid-liquid coupling Stiffness matrix are obtained. Using QR method , pipe’s nature frequencies are calculated. The curves of the first four orders of natural frequency-flow velocity of pipe waw given .The influence of flowing velocity ,pressure, solid-liquid coupling damp and solid-liquid coupling stiffness on natural frequency are discussed respectively.The dynamic respondence of the pipes for stepload with different flow velocity are calculated by Newmark method .It is found that,with the flow velocity increased, the nature frequency of the pipes reduced, increased,reduced again and so on.
文摘The vibrational frequency analysis of finite elastic tube filled with compressible viscous fluid has received plenty of attention in recent years. To apply frequency analysis to defect detection for example, it is necessary to investigate the vibrational behavior under appropriate boundary conditions. In this paper, we present a detailed theoretical study of the three dimensional modal analysis of compressible fluid within an elastic cylinder. The dispersion equations of flexura], torsional and longitudinal modes are derived by elastodynamic theory and the unsteady Stokes equation. The symbolic software Mathematica is used in order to find the coupled vibration frequencies. The dispersion equation is deduced and analytically solved. The finite element results are compared with the present method for validation and an acceptable match between them are obtained.
基金supported by the National Natural Science Foundation of China(No.11902182)the Program of Shanghai Academic/Technology Research Leader of China(No.19XD1421600)+2 种基金the China Postdoctoral Science Foundation(No.2019M651485)the Natural Science Foundation of Shandong Province of China(No.ZR2019BA001)the Natural Science Foundation of Tianjin of China(No.20JCQNJC01070)。
文摘The nonlinear modal coupling in a T-shaped piezoelectric resonator,when the former two natural frequencies are away from 1:2,is studied.Experimentally sweeping up the exciting frequency shows that the horizontal beam exhibits a nonlinear hardening behavior.The first primary resonance of the vertical beam,owing to modal coupling,exhibits an abrupt amplitude increase,namely the Hopf bifurcation.The frequency comb phenomenon induced by modal coupling is measured experimentally.A Duffing-Mathieu coupled model is theoretically introduced to derive the conditions of the modal coupling and frequency comb phenomenon.The results demonstrate that the modal coupling results from nonlinear stiffness hardening and is strictly dependent on the loading range and sweeping form of the driving voltage and the frequency of the piezoelectric patches.
基金Project supported by the National Natural Science Foundation of China(No.10632040)
文摘A nonlinear model of a low pressure cylinder-generator rotor system is presented to study sub-synchronous resonance and combined resonance. Analytical results are obtained by an averaging method. Transition sets and bifurcation diagrams are obtained based on the singularity theory for the two-state variable system. The bifurcation characteristics are analyzed to provide a basis for the optimal design and fault diagnosis of the rotor system. Finally, the theoretical results are verified with the numerical results.
文摘By applying the sinusoidal wave mode to simulate the rugged surface of bridge deck,accounting for vehicle-bridge interaction and using Euler-Bernoulli beam theory, a coupling vibration model of vehicle-bridge system was developed. The model was solved by mode analyzing method and Runge-Kutta method, and the dynamic response and the resonance curve of the bridge were obtained. It is found that there are two resonance regions, one represents the main resonance while the other the minor resonance, in the resonance curve. The influence due to the rugged surface, the vibration mode of bridge, and the interaction between vehicle and bridge on vibration of the system were discussed. Numerical results show that the influence due to these parameters is so significant that the effect of roughness of the bridge deck and the mode shape of the bridge can't be ignored and the vehicle velocity should be kept away from the critical speed of the vehicle.
文摘Experimental vibrational spectra of heavy light XH stretching vibrations of simple molecules have been analyzed using the local mode model.In addition,the bond dipole approach,which assumes that the transition dipole moment(TDM)of the XH stretching mode is aligned along the XH bond,has helped analyze experimental spectra.We performed theoretical calculations of the XH stretching vibrations of HOD,HND^−,HCD,HSD,HPD^−,and HSiD using local mode model and multi-dimensional normal modes.We found that consistent with previous notions,a localized 1D picture to treat the XH stretching vibration is valid even for analyzing the TDM tilt angle.In addition,while the TDM of the OH stretching fundamental transition tilted away from the OH bond in the direction away from the OD bond,that for the XH stretching fundamental of HSD,HND^−,HPD^−,HCD,and HSiD tilted away from the OH bond but toward the OD bond.This shows that bond dipole approximation may not be a good approximation for the present systems and that the heavy atom X can affect the transition dipole moment direction.The variation of the dipole moment was analyzed using the atoms-in-molecule method.
文摘The governing equation and energy equations for thermal-elastic coupling vibration of cylindrical shell were developed. The Garlerkin method was used in numerical process. Some useful result can be concluded from numerical result. With the increase of the amplitude of temperature and coupling coefficient, the speed of vibration decaying becomes slower and the coupling effect becomes weaker. The larger the ration of length to radius and length to thickness, the faster the decaying of the vibration amplitude and the vibration frequency increase. It means the coupling effect gets stronger. The larger the coupling coefficient, the smaller the axial stress, the axial force and the bendind moment are.
文摘The response of fuel-tank-sloshing to aircraft maneuver is a difficult mathematical problem to be solved. Beginning with setting up the mechanical model and the respective mathematical model, this paper uses both F.E. and B.E.M. to imitate the sloshing process. The paper has developed some special techniques to deal with strong nonlinear characteristics, and provided satisfactory numerical results of displacements and stress for low frequency, resonance, high frequency and fuel tank dynamic response characteristics. The program not only assures convergence and stability of the solution, but also has the function of graphic display. It is a valuable technique to deal with the strong nonlinear oscillation of fuel tank with large amplitude and moving boundary condition on free surface.
文摘The nonlinear dynamic model of the marine diesel crankshaft system with a propeller and 6 cranks is established, in which the variable moment of inertia of the linkage and the piston, coupling effect between torsional and axial vibration, the actuating force applied on the piston, the actuating torque and force applied on the propeller is included. The governing equations of the model denote a strong nonlinear and non autonomous system. By numeric simulation, the dynamic response of the system to initial displacement and initial speed, variable moment of inertia, the pressure applied on the piston by combustion gas, the torque and the axial force applied on the propeller by fluid is researched respectively. According to the research results, the variable moment of inertia and coupling effect between torsional and axial vibration are the fundamental reason for nonlinear vibration. Different actuating factors can not only result in different frequency components of the response, but make the same frequency component have different vibration amplitude. The dynamic behavior of the system is not influenced obviously by the actuating torque and force applied on the propeller. There is obvious difference in sensitivity of the dynamic response in the different direction to the same actuating factor.
基金supported by the Henan Provincial Science and Technology Research Project under Grant(152102310295).
文摘A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.