期刊文献+
共找到77篇文章
< 1 2 4 >
每页显示 20 50 100
Delocalized Nonlinear Vibrational Modes in Bcc Lattice for Testing and Improving Interatomic Potentials
1
作者 Denis S.Ryabov IgorV.Kosarev +2 位作者 Daxing Xiong Aleksey A.Kudreyko Sergey V.Dmitriev 《Computers, Materials & Continua》 2025年第3期3797-3820,共24页
Molecular dynamics(MD)is a powerful method widely used in materials science and solid-state physics.The accuracy of MD simulations depends on the quality of the interatomic potentials.In this work,a special class of e... Molecular dynamics(MD)is a powerful method widely used in materials science and solid-state physics.The accuracy of MD simulations depends on the quality of the interatomic potentials.In this work,a special class of exact solutions to the equations of motion of atoms in a body-centered cubic(bcc)lattice is analyzed.These solutions take the form of delocalized nonlinear vibrational modes(DNVMs)and can serve as an excellent test of the accuracy of the interatomic potentials used in MD modeling for bcc crystals.The accuracy of the potentials can be checked by comparing the frequency response of DNVMs calculated using this or that interatomic potential with that calculated using the more accurate ab initio approach.DNVMs can also be used to train new,more accurate machine learning potentials for bcc metals.To address the above issues,it is important to analyze the properties of DNVMs,which is the main goal of this work.Considering only the point symmetry groups of the bcc lattice,34 DNVMs are found.Since interatomic potentials are not used in finding DNVMs,they are exact solutions for any type of potential.Here,the simplest interatomic potentials with cubic anharmonicity are used to simplify the analysis and to obtain some analytical results.For example,the dispersion relations for small-amplitude phonon modes are derived,taking into account interactions between up to the fourth nearest neighbor.The frequency response of the DNVMs is calculated numerically,and for some DNVMs examples of analytical analysis are given.The energy stored by the interatomic bonds of different lengths is calculated,which is important for testing interatomic potentials.The pros and cons of using DNVMs to test and improve interatomic potentials for metals are discussed.Since DNVMs are the natural vibrational modes of bcc crystals,any reliable interatomic potential must reproduce their properties with reasonable accuracy. 展开更多
关键词 Interatomic potentials molecular dynamics bcc lattice long-range interactions dispersion relation nonlinear dynamics exact solution delocalized nonlinear vibrational mode
在线阅读 下载PDF
Rolling Bearing Fault Diagnosis Method Based on FFT-VMD Multiscale Information Fusion and SE-TCN Model
2
作者 Chaozhi Cai Yuqi Ren +1 位作者 Yingfang Xue Jianhua Ren 《Structural Durability & Health Monitoring》 2025年第3期665-682,共18页
Rolling bearings are important parts of industrial equipment,and their fault diagnosis is crucial to maintaining these equipment’s regular operations.With the goal of improving the fault diagnosis accuracy of rolling... Rolling bearings are important parts of industrial equipment,and their fault diagnosis is crucial to maintaining these equipment’s regular operations.With the goal of improving the fault diagnosis accuracy of rolling bearings under complex working conditions and noise,this study proposes a multiscale information fusion method for fault diagnosis of rolling bearings based on fast Fourier transform(FFT)and variational mode decomposition(VMD),as well as the Senet(SE)-TCNnet(TCN)model.FFT is used to transform the original one-dimensional time domain vibration signal into a frequency domain signal,while VMD is used to decompose the original signal into several inherent mode functions(IMFs)of different scales.The center frequency method also determines the number of mode decompositions.Then,the data obtained by the two methods are fused into data containing the bearing fault information of different scales.Finally,the fused data are sent to the SE-TCN model for training.Experimental tests are conducted to verify the performance of this method.The findings reveal that an average accuracy of 98.39%can be achieved when noise is added and can even reach 100%when the signal-to-noise ratio is 6 dB.When the load changes,the accuracy of the model can reach 97.45%.The proposed method has the characteristics of high accuracy and strong generalization ability in bearing fault diagnosis.Furthermore,it can effectively overcome the effects of noise and variable working conditions in actual industrial environments,thus providing some ideas for future practical applications of bearing fault diagnosis. 展开更多
关键词 Fault diagnosis rolling bearing vibrational mode decomposition fast Fourier transform SE-TCN
在线阅读 下载PDF
Coupling of quasi-localized and phonon modes in glasses at low frequency
3
作者 段军 蔡松林 +2 位作者 丁淦 戴兰宏 蒋敏强 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期564-571,共8页
Boson peak of glasses,a THz vibrational excess compared to Debye squared-frequency law,remains mysterious in condensed-matter physics and material science.It appears in many different kinds of glassy matters and is al... Boson peak of glasses,a THz vibrational excess compared to Debye squared-frequency law,remains mysterious in condensed-matter physics and material science.It appears in many different kinds of glassy matters and is also argued to exist in damped crystals.A consensus is that boson peak originates from the coupling of the(quasi)-localized non-phonon modes and the plane-wave-like phonon modes,but the coupling behavior is still not fully understood.In this paper,by modulating the content of localized modes and the frequencies of phonon modes,the coupling is clearly reflected in the localization and anharmonicity of low-frequency vibrational modes.The coupling enhances with increasing cooling rate and sample size.For finite sample size,phonon modes do not fully intrude into the low frequency to form a dense spectrum and they are not sufficiently coupled to the localized modes,thus there is no Debye level and boson peak is ill-defined.This suggestion remains valid in the presence of thermal motions induced by temperature,even though the anharmonicity comes into play.Our results point to the coupling of quasi-localized and phonon modes and its relation to the boson peak. 展开更多
关键词 metallic glasses low-frequency vibrational modes plane wave boson peak
原文传递
Fault Identification for Shear-Type Structures Using Low-Frequency Vibration Modes
4
作者 Cuihong Li Qiuwei Yang Xi Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2769-2791,共23页
Shear-type structures are common structural forms in industrial and civil buildings,such as concrete and steel frame structures.Fault diagnosis of shear-type structures is an important topic to ensure the normal use o... Shear-type structures are common structural forms in industrial and civil buildings,such as concrete and steel frame structures.Fault diagnosis of shear-type structures is an important topic to ensure the normal use of structures.The main drawback of existing damage assessment methods is that they require accurate structural finite element models for damage assessment.However,for many shear-type structures,it is difficult to obtain accurate FEM.In order to avoid finite elementmodeling,amodel-freemethod for diagnosing shear structure defects is developed in this paper.This method only needs to measure a few low-order vibration modes of the structure.The proposed defect diagnosis method is divided into two stages.In the first stage,the location of defects in the structure is determined based on the difference between the virtual displacements derived from the dynamic flexibility matrices before and after damage.In the second stage,damage severity is evaluated based on an improved frequency sensitivity equation.Themain innovations of this method lie in two aspects.The first innovation is the development of a virtual displacement difference method for determining the location of damage in the shear structure.The second is to improve the existing frequency sensitivity equation to calculate the damage degree without constructing the finite elementmodel.Thismethod has been verified on a numerical example of a 22-story shear frame structure and an experimental example of a three-story steel shear structure.Based on numerical analysis and experimental data validation,it is shown that this method only needs to use the low-order modes of structural vibration to diagnose the defect location and damage degree,and does not require finite element modeling.The proposed method should be a very simple and practical defect diagnosis technique in engineering practice. 展开更多
关键词 Fault diagnosis shear steel structure vibration mode dynamic flexibility frequency sensitivity
在线阅读 下载PDF
Classifying Vibration Modes Generated by The Michelson Interferometer Using Machine Learning Methods
5
作者 Xin-Han Tsai Anthony An-Chih Yeh +4 位作者 Chen-Hsin Lu Shang-Yu Chou Shih-Wei Wang Chi-Wei Lee Po-Han Lee 《Journal of Modern Physics》 2024年第12期2169-2192,共24页
In this paper, we explore the classification of vibration modes generated by handwriting on an optical desk using deep learning architectures. Three deep learning models—Long Short-Term Memory (LSTM) networks with at... In this paper, we explore the classification of vibration modes generated by handwriting on an optical desk using deep learning architectures. Three deep learning models—Long Short-Term Memory (LSTM) networks with attention mechanism, Video Vision Transformer (ViViT), and Long-term Recurrent Convolutional Network (LRCN)—were evaluated to determine the most effective method for analyzing time series patterns generated by a Michelson interferometer. The interferometer was used to detect vibration modes created by handwriting, capturing time-series data from the diffraction patterns. Among these models, the LSTM-Attention network achieved the highest validation accuracy, reaching up to 92%, outperforming both ViViT and LRCN. These findings highlight the potential of deep learning in material science for detecting and classifying vibration patterns. The powerful performance of the LSTM-Attention model suggests that it could be applied to similar classification tasks in related fields. 展开更多
关键词 Michelson Interferometer Machine Learning Vibration modes Long Short-Term Memory (LSTM)
在线阅读 下载PDF
Design and test of an adaptive self-excited/forced mode intelligent vibrating subsoiler
6
作者 Mingzhuo Guo Wen Yang +6 位作者 Chengliang Zhang Xiaosong Sun Junxiang Zhao Baofeng Wang Tianyi Lan Guohui Feng Jiale Zhao 《International Journal of Agricultural and Biological Engineering》 2025年第4期101-109,共9页
Subsoiling is an effective tillage technique for alleviating soil compaction,but the high traction resistance encountered at deeper working depths constrains its widespread application.To address this issue,a self-exc... Subsoiling is an effective tillage technique for alleviating soil compaction,but the high traction resistance encountered at deeper working depths constrains its widespread application.To address this issue,a self-excited and forced intelligent vibrating subsoiler was developed.The subsoiler is equipped with a compound vibration mechanism that can adaptively switch between self-excited vibration and forced vibration modes based on real-time monitoring of soil resistance.Field experiments were conducted to evaluate the performance of the self-excited and forced vibrating subsoiling(SEFV).These experiments compared its performance with conventional subsoiling(CS)and self-excited vibrating subsoiling(SEV)at different working depths(35-45 cm)and forward speeds(2 and 4 km/h).The results showed that at 2 km/h,SEFV operated in self-excited vibration mode and reduced traction resistance by 12.4%-13.1%compared to CS,with no significant difference from SEV.At 4 km/h,the resistance reduction effect of SEFV became more pronounced with increasing depth.At 45 cm depth,SEFV reduced traction resistance by 9.9%and 18.9%compared to SEV and CS,respectively,as it switched to forced vibration mode to overcome the high soil resistance.SEFV also maintained high subsoiling depth stability(>90%)at both speeds and all depths tested,demonstrating its advantage over SEV under high resistance conditions.The intelligent control system based on resistance feedback enabled the SEFV to automatically adapt to variable soil conditions and optimize its vibration behavior for improved subsoiling performance and energy efficiency.This study provides new insights into the design of adaptive vibrating subsoilers for enhanced tillage operations. 展开更多
关键词 vibrating subsoiler self-excited vibration forced vibration adaptive control vibration mode switching
原文传递
Investigation of Microstructure, Natural Frequencies and Vibration Modes of Dragonfly Wing 被引量:14
7
作者 H. Rajabi M. Moghadami A. Darvizeh 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第2期165-173,共9页
In the present work, a thorough investigation on the microstructural and morphological aspects of dragonfly wings was carried out using scanning electron microscope. Then, based on this study and the previous reports,... In the present work, a thorough investigation on the microstructural and morphological aspects of dragonfly wings was carried out using scanning electron microscope. Then, based on this study and the previous reports, a precise three-dimensional numerical model was developed and natural frequencies and vibration modes of dragonfly forewing were determined by finite element method. The results shown that dragonfly wings are made of a series of adaptive materials, which form a very complex composite structure. This bio-composite fabrication has some unique features and potential benefits. Furthermore, the numerical results show that the first natural frequency of dragonfly wings is about 168 Hz and bending is the predominant deformation mode in this stage. The accuracy of the present analysis is verified by comparison of calculated results with experimental data. This paper may be helpful for micro aerial vehicle design concerning dynamic response. 展开更多
关键词 insect wing natural frequency vibration mode SEM finite element method
在线阅读 下载PDF
Assignment of terahertz vibrational modes of L-glutamine using density functional theory within generalized-gradient approximation 被引量:8
8
作者 张寒 张朝晖 +3 位作者 赵小燕 张天尧 燕芳 申江 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期211-218,共8页
The crystal structure of L-glutamine is stabilized by a three-dimensional network of intermolecular hydrogen bonds.We utilize plane-wave density functional theory lattice-dynamics calculations within the generalized-g... The crystal structure of L-glutamine is stabilized by a three-dimensional network of intermolecular hydrogen bonds.We utilize plane-wave density functional theory lattice-dynamics calculations within the generalized-gradient approximation(GGA), Perdew–Burke–Ernzerhof(PBE), PBE for solids(PBEsol), PBE with Wu–Cohen exchange(WC), and dispersion-corrected PBE, to investigate the effect of these intermolecular contacts on the absorption spectra of glutamine in the terahertz frequency range. Among these calculations, the solid-state simulated results obtained using the WC method exhibit a good agreement with the measured absorption spectra, and the absorption features are assigned with the help of WC. This indicates that the vibrational modes of glutamine were related to the combination of intramolecular and intermolecular motions, the intramolecular modes were dominated by rocking or torsion involving functional groups; the intermolecular modes mainly result from the translational motions of individual molecules, and the rocking of the hydrogenbonded functional groups. 展开更多
关键词 terahertz vibrational modes amino acid plane-wave density functional theory generalized-gradient approximation
原文传递
Three-dimensional Modeling for Predicting the Vibration Modes of Twin Ball Screw Driving Table 被引量:5
9
作者 WANG Renche ZHAO Tong +1 位作者 YE Peiqing LIU Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期211-218,共8页
As a redundant drive mechanism, twin ball screw feed system has the advantage of high stiffness and little yaw vibration in the feeding process, while leads to increased difficulty with vibration characteristics analy... As a redundant drive mechanism, twin ball screw feed system has the advantage of high stiffness and little yaw vibration in the feeding process, while leads to increased difficulty with vibration characteristics analysis and structure optimization. Only low-dimensional structure and dynamics parameters are considered in the existing research, the complete and effective model for predicting the table's vibrations is lacked. A three-dimensional(3D) mechanical model of twin ball screw driving table is proposed. In order to predict the vibration modes of the table quantitatively, an analytical formulation following a comprehensive approach is developed, where the drive system is modeled as a lumped mass-spring system, and the Lagrangian method is used to obtain the table's independent and coupled axial, yaw, and pitch vibration modes. The frequency variation of each mode is studied for different heights of the center of gravity, nut positions and table masses by numerical simulations. Modal experiment is carried out on the Z-axis feed table of the horizontal machining center MCH63. The results show that for each mode, the error between the estimated and the measured frequencies is less than 13%. The independent and coupled vibration modes are in accordance with the experimental results, respectively The proposed work can serve a better understanding of the table's dynamics and be beneficial for optimizing the structure parameters of twin ball screw drive system in the design stage. 展开更多
关键词 twin ball screw drive dynamic modeling vibration mode
在线阅读 下载PDF
Mode analysis of structures using the Fourier p-element method 被引量:1
10
作者 吴国荣 钟伟芳 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2003年第2期315-318,共4页
The Fourier p-element method is an improvement to the finite element method,and is particularly suitable for vibration analysis due to the well-behaved Fourier series.In this paper,an iteration procedure is presented ... The Fourier p-element method is an improvement to the finite element method,and is particularly suitable for vibration analysis due to the well-behaved Fourier series.In this paper,an iteration procedure is presented for solving the resulting nonlinear eigenvalue problem.Three types of Fourier version shape functions are constructed for analyzing the circular shaft torsional vibration,the plate in-plane vibration and annular plate flexural vibration modes,respectively. The numerical results show that this method can achieve higher accuracy and converge much faster than the FEM based on polynomial interpolation,especially for higher mode analysis. 展开更多
关键词 vibration mode analysis eigenvalue problem FEM dynamic condensation Fourier series polynomial interpolation
在线阅读 下载PDF
Influence of vibration mode on the screening process 被引量:5
11
作者 Dong Hailin Liu Chusheng +1 位作者 Zhao Yuemin Zhao Lala 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期95-98,共4页
The screening of particles with different vibration modes was simulated by means of a 3D discrete element method (3D-DEM). The motion and penetration of the particles on the screen deck were analyzed for linear, circu... The screening of particles with different vibration modes was simulated by means of a 3D discrete element method (3D-DEM). The motion and penetration of the particles on the screen deck were analyzed for linear, circular and elliptical vibration of the screen. The results show that the travel velocity of the particles is the fastest, but the screening efficiency is the lowest, for the linear vibration mode. The circular motion resulted in the highest screening efficiency, but the lowest particle travel velocity. In the steady state the screening efficiency for each mode is seen to increase gradually along the longitudinal direction of the deck. The screening efficiency increment of the circular mode is the largest while the linear mode shows the smallest increment. The volume fraction of near-mesh size particles at the underside is larger than that of small size particles all along the screen deck. Linear screening mode has more near-mesh and small size particles on the first three deck sections, and fewer on the last two sections, compared to the circular or elliptical modes. 展开更多
关键词 Vibration mode Screening process Particles Discrete element method
在线阅读 下载PDF
Effect of Vibrational Modes on Sand Pressure and Pattern Deformation in the EPC Process 被引量:1
12
作者 A.Ikenaga G.S.Cho +1 位作者 K.H.Choe K.W.Lee 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第3期326-329,共4页
During the EPC (expendable pattern casting) process, one of the essential requirements is to prevent pattern distortion duringsand filling and compaction. A new method which vibrates the system in a two-dimensional ci... During the EPC (expendable pattern casting) process, one of the essential requirements is to prevent pattern distortion duringsand filling and compaction. A new method which vibrates the system in a two-dimensional circular mode has been appliedto the EPC process. The molding properties of unbonded sand obtained by this new vibration mode are investigated andcompared with those in the one-dimensional vertical mode. For adequate compaction of sand. the circular vibration mode ismore effective than the vertical mode. Sand became more fluidized by the circular vibration and the particle pressure coefficientwas close to unity The particle pressure coefficient, which is defined as the ratio of horizontal to vertical sand pressure, isresponsible for the effectiveness of sand filling. 展开更多
关键词 EPC process Sand compaction Vibration mode Pattern deformation Sand pressure
在线阅读 下载PDF
Analysis of Low-Frequency Vibrational Modes and Particle Rearrangements in Marginally Jammed Amorphous Solid under Quasi-Static Shear 被引量:1
13
作者 董远湘 张国华 +2 位作者 孙其诚 赵雪丹 牛晓娜 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第12期101-104,共4页
We present the numerical simulation results of a model granular assembly formed by spherical particles with tIertzian interaction subjected to a simple shear in the athermal quasi-static limit. The stress-strain curve... We present the numerical simulation results of a model granular assembly formed by spherical particles with tIertzian interaction subjected to a simple shear in the athermal quasi-static limit. The stress-strain curve is shown to separate into smooth, elastic branches followed by a subsequent plastic event. Mode analysis shows that the lowest-frequency vibrational mode is more localized, and eigenvalues and participation ratios of low- frequency modes exhibit similar power-law behavior as the system approaches plastic instability, indicating that the nature of plastic events in the granular system is also a saddle node bifurcation. The analysis of projection and spatial structure shows that over 75% contributions to the non-affine displacement field at a plastic instability come from the lowest-frequency mode, and the lowest-frequency mode is strongly spatially correlated with local plastic rearrangements, inferring that the lowest-frequency mode could be used as a predictor for future plastic rearrangements in the disordered system jammed marginally. 展开更多
关键词 Analysis of Low-Frequency Vibrational modes and Particle Rearrangements in Marginally Jammed Amorphous Solid under Quasi-Static Shear
原文传递
MODES COMPUTATION AND ANALYSIS FOR LONG MULTI-SPAN BUNDLE CONDUCTORS OF POWER TRANSMISSION LINES WITH GALLOPING CONTROL DEVICES 被引量:1
14
作者 Zhao Gaoyu He Zeng 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第4期350-357,共8页
A new type of element which is suitable for solving the modes of thegalloping long multi-span bundle conductor structures is presented. The element is composed of allsub-conductor segments between two spacers. Based o... A new type of element which is suitable for solving the modes of thegalloping long multi-span bundle conductor structures is presented. The element is composed of allsub-conductor segments between two spacers. Based on the linearized governing differential equationsof the conductors, the mass matrix and stiffness matrix of the element in consideration of theconstrained relations imposed on the conductors by spacers are derived. The dynamic characteristicsof the galloping control devices can be directly added to the element. The modes for an actual powerline structure are computed by using the element formula and FEM procedures, where seven cases ofdifferent galloping control device allocations are considered. Compared with the measured data, themethod is shown to be reliable and effective. Analysis and discussions of the computational resultsare given. Some hints that are helpful to further investigation of galloping are also obtained . 展开更多
关键词 bundle conductors galloping control devices finite element method modes of free vibration
在线阅读 下载PDF
Natural Frequency and Main Vibration Mode Analysis of the Braking System of Metallurgical Crane 被引量:1
15
作者 JIN Yue WANG Mu-ju 《International Journal of Plant Engineering and Management》 2017年第3期163-166,共4页
The safety brake system of metallurgy bridge crane is generally composed of two separated block brake, brake disc, and torsion shaft. The analysis of natural frequency and main vibration mode on this two-degree torsio... The safety brake system of metallurgy bridge crane is generally composed of two separated block brake, brake disc, and torsion shaft. The analysis of natural frequency and main vibration mode on this two-degree torsion vibration system is the basement to study the vibration model and vibration performance. In this work, we investigated natural frequency of the braking system of metallurgical crane with analytic method. This provides a systematic guidance towards a successful brake system design 展开更多
关键词 metallurgical bridge crane VIBRATION natural frequency vibration mode
在线阅读 下载PDF
Relationship between the Local Vibration Mode Characteristics and the Charge State of Carbon Acceptor in GaAs
16
作者 杨瑞霞 李光平 +1 位作者 王琴 何秀坤 《Rare Metals》 SCIE EI CAS CSCD 1992年第3期207-211,共5页
The local vibration mode(LVM)of carbon acceptor in GaAs is studied by measuring directly the change in LVM absorption with a NIC-170 SX FT-IR spectrometer.The change in the charge state of carbon acceptor and the temp... The local vibration mode(LVM)of carbon acceptor in GaAs is studied by measuring directly the change in LVM absorption with a NIC-170 SX FT-IR spectrometer.The change in the charge state of carbon acceptor and the temperature dependence of the LVM absorption were investigated also.The contents of the impurities other than carbon were estimated by secondary ion mass spectrometry.It is observed that the frequency,the spectral form and the integrated absorption of the LVM are not affected by the change in charge state of car- bon acceptor. 展开更多
关键词 Local vibration mode GAAS Charge state Carbon acceptor ABSORPTION
在线阅读 下载PDF
Low-frequency vibrational modes of glutamine
17
作者 王卫宁 王果 张岩 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期200-204,共5页
High-resolution terahertz absorption and Raman spectra of glutamine in the frequency region 0.2 THz-2.8 THz are obtained by using THz time domain spectroscopy and low-frequency Raman spectroscopy. Based on the experim... High-resolution terahertz absorption and Raman spectra of glutamine in the frequency region 0.2 THz-2.8 THz are obtained by using THz time domain spectroscopy and low-frequency Raman spectroscopy. Based on the experimental and the computational results, the vibration modes corresponding to the terahertz absorption and Raman scatting peaks are assigned and further verified by the theoretical calculations. Spectral investigation of the periodic structure of glutamine based on the sophisticated hybrid density functional B3LYP indicates that the vibrational modes come mainly from the inter-molecular hydrogen bond in this frequency region. 展开更多
关键词 vibrational modes THz time-domain spectroscopy Raman scattering B3LYP AMINOACID
原文传递
Quantum computation and simulation with vibrational modes of trapped ions
18
作者 Wentao Chen Jaren Gan +2 位作者 Jing-Ning Zhang Dzmitry Matuskevich Kihwan Kim 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期1-17,共17页
Vibrational degrees of freedom in trapped-ion systems have recently been gaining attention as a quantum resource,beyond the role as a mediator for entangling quantum operations on internal degrees of freedom,because o... Vibrational degrees of freedom in trapped-ion systems have recently been gaining attention as a quantum resource,beyond the role as a mediator for entangling quantum operations on internal degrees of freedom,because of the large available Hilbert space.The vibrational modes can be represented as quantum harmonic oscillators and thus offer a Hilbert space with infinite dimensions.Here we review recent theoretical and experimental progress in the coherent manipulation of the vibrational modes,including bosonic encoding schemes in quantum information,reliable and efficient measurement techniques,and quantum operations that allow various quantum simulations and quantum computation algorithms.We describe experiments using the vibrational modes,including the preparation of non-classical states,molecular vibronic sampling,and applications in quantum thermodynamics.We finally discuss the potential prospects and challenges of trapped-ion vibrational-mode quantum information processing. 展开更多
关键词 quantum computation quantum simulation trapped ions vibrational modes
原文传递
Principle and Experimental Verification of Flexible Caudal Fin Based on Active Torsion Propulsion Mode
19
作者 Guan Yuanlin Li Huafeng +1 位作者 Yang Xixin Di Sisi 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第5期595-601,共7页
The active torsion propulsion mode of a caudal fin,composed of macro fiber composites(MFC)and carbon fiber orthotropic composite material is proposed.The caudal fin is excited by the piezoelectric structure to vibrate... The active torsion propulsion mode of a caudal fin,composed of macro fiber composites(MFC)and carbon fiber orthotropic composite material is proposed.The caudal fin is excited by the piezoelectric structure to vibrate flexibly.The work principle is firstly analyzed by finite element method(FEM)and experiments.Then the caudal fin is optimized to increase the torque and improve the streamline,and the added mass effect from the water is discussed in terms of the frequency of the structure.The torsion resonance frequency is around 103 Hz in the air and decreased by 75%to 25 Hz in the water.Finally,the mean thrust is discussed and measured to be 11 mN at900V(Peak to peak)driving voltage.A flexible micro robot is developed and tested.The locomotion velocity and flow velocity is 320mm/s and 268mm/s,respectively.The results of the simulation and experiments indicate that the locomotion of the biomimetic aquatic robot has fast movement characteristics. 展开更多
关键词 macro fiber composite torsion vibration mode local travelling wave micro robot
在线阅读 下载PDF
Deriving Vibration Modes of Semi-infinite Chain Model by “Invariant Eigen-operator”Method
20
作者 FAN Hong-Yi WU Hao 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第1期50-52,共3页
For the first time, we introduce a fully quantum mechanical Hamiltonian for a semi-infinite chain model of atoms. We then derive the vibration modes of this model by virtue of the "invariant eigen-operator" method i... For the first time, we introduce a fully quantum mechanical Hamiltonian for a semi-infinite chain model of atoms. We then derive the vibration modes of this model by virtue of the "invariant eigen-operator" method in two different cases, which is concise and revealing. 展开更多
关键词 semi-infinite chain vibration modes IEO method
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部