In the Pidgeon process involving a vertical pot,bonded slag pellets occasionally emerge at the bottom of the reduction pot,impeding smooth slag discharge.To reveal the formation mechanism of the bonded slag pellets,th...In the Pidgeon process involving a vertical pot,bonded slag pellets occasionally emerge at the bottom of the reduction pot,impeding smooth slag discharge.To reveal the formation mechanism of the bonded slag pellets,thermodynamic calculations,X-ray diffraction(XRD),X-ray fluorescence spectrometry(XRF),electron probe microanalyzer(EPMA),X-ray photoelectron spectroscopy(XPS),and differential scanning calorimetry(DSC)were employed.The bonded slag pellets mainly comprise MgO,CaSi_(2),CaO,and Ca2SiO_(4).CaSi_(2) in the bonded slag pellets is attributed to the reduction reaction between Si and CaO,yielding liquid CaSi_(2).Simultaneously,the reaction between CaSi_(2) and MgO,which will typically produce Mg vapor,is inhibited,resulting in the accumulation of CaSi_(2).Owing to the solid-liquid transition of CaSi_(2),this process culminates in the bonding of slag pellets.This study can guide the Pidgeon process optimization,enabling mitigation of the“dead pot”issue,thereby enhancing efficiency and reducing costs.展开更多
基金China Postdoctoral Science Foundation (No. 2020M682337)。
文摘In the Pidgeon process involving a vertical pot,bonded slag pellets occasionally emerge at the bottom of the reduction pot,impeding smooth slag discharge.To reveal the formation mechanism of the bonded slag pellets,thermodynamic calculations,X-ray diffraction(XRD),X-ray fluorescence spectrometry(XRF),electron probe microanalyzer(EPMA),X-ray photoelectron spectroscopy(XPS),and differential scanning calorimetry(DSC)were employed.The bonded slag pellets mainly comprise MgO,CaSi_(2),CaO,and Ca2SiO_(4).CaSi_(2) in the bonded slag pellets is attributed to the reduction reaction between Si and CaO,yielding liquid CaSi_(2).Simultaneously,the reaction between CaSi_(2) and MgO,which will typically produce Mg vapor,is inhibited,resulting in the accumulation of CaSi_(2).Owing to the solid-liquid transition of CaSi_(2),this process culminates in the bonding of slag pellets.This study can guide the Pidgeon process optimization,enabling mitigation of the“dead pot”issue,thereby enhancing efficiency and reducing costs.