期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
SensFL:Privacy-Preserving Vertical Federated Learning with Sensitive Regularization 被引量:1
1
作者 Chongzhen Zhang Zhichen Liu +4 位作者 Xiangrui Xu Fuqiang Hu Jiao Dai Baigen Cai Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期385-404,共20页
In the realm of Intelligent Railway Transportation Systems,effective multi-party collaboration is crucial due to concerns over privacy and data silos.Vertical Federated Learning(VFL)has emerged as a promising approach... In the realm of Intelligent Railway Transportation Systems,effective multi-party collaboration is crucial due to concerns over privacy and data silos.Vertical Federated Learning(VFL)has emerged as a promising approach to facilitate such collaboration,allowing diverse entities to collectively enhance machine learning models without the need to share sensitive training data.However,existing works have highlighted VFL’s susceptibility to privacy inference attacks,where an honest but curious server could potentially reconstruct a client’s raw data from embeddings uploaded by the client.This vulnerability poses a significant threat to VFL-based intelligent railway transportation systems.In this paper,we introduce SensFL,a novel privacy-enhancing method to against privacy inference attacks in VFL.Specifically,SensFL integrates regularization of the sensitivity of embeddings to the original data into the model training process,effectively limiting the information contained in shared embeddings.By reducing the sensitivity of embeddings to the original data,SensFL can effectively resist reverse privacy attacks and prevent the reconstruction of the original data from the embeddings.Extensive experiments were conducted on four distinct datasets and three different models to demonstrate the efficacy of SensFL.Experiment results show that SensFL can effectively mitigate privacy inference attacks while maintaining the accuracy of the primary learning task.These results underscore SensFL’s potential to advance privacy protection technologies within VFL-based intelligent railway systems,addressing critical security concerns in collaborative learning environments. 展开更多
关键词 vertical federated learning PRIVACY DEFENSES
在线阅读 下载PDF
SecureVFL: Privacy-preserving multi-party vertical federated learning based on blockchain and RSS
2
作者 Mochan Fan Zhipeng Zhang +4 位作者 Zonghang Li Gang Sun Hongfang Yu Jiawen Kang Mohsen Guizani 《Digital Communications and Networks》 2025年第3期837-849,共13页
Vertical Federated Learning(VFL),which draws attention because of its ability to evaluate individuals based on features spread across multiple institutions,encounters numerous privacy and security threats.Existing sol... Vertical Federated Learning(VFL),which draws attention because of its ability to evaluate individuals based on features spread across multiple institutions,encounters numerous privacy and security threats.Existing solutions often suffer from centralized architectures,and exorbitant costs.To mitigate these issues,in this paper,we propose SecureVFL,a decentralized multi-party VFL scheme designed to enhance efficiency and trustworthiness while guaranteeing privacy.SecureVFL uses a permissioned blockchain and introduces a novel consensus algorithm,Proof of Feature Sharing(PoFS),to facilitate decentralized,trustworthy,and high-throughput federated training.SecureVFL introduces a verifiable and lightweight three-party Replicated Secret Sharing(RSS)protocol for feature intersection summation among overlapping users.Furthermore,we propose a(_(2)^(4))-sharing protocol to achieve federated training in a four-party VFL setting.This protocol involves only addition operations and exhibits robustness.SecureVFL not only enables anonymous interactions among participants but also safeguards their real identities,and provides mechanisms to unmask these identities when malicious activities are performed.We illustrate the proposed mechanism through a case study on VFL across four banks.Finally,our theoretical analysis proves the security of SecureVFL.Experiments demonstrated that SecureVFL outperformed existing multi-party VFL privacy-preserving schemes,such as MP-FedXGB,in terms of both overhead and model performance. 展开更多
关键词 Permissioned blockchain vertical federated learning Privacy protection Replicated secret sharing
在线阅读 下载PDF
A Privacy-Preserving Scheme for Multi-Party Vertical Federated Learning
3
作者 FAN Mochan ZHANG Zhipeng +2 位作者 LI Difei ZHANG Qiming YAO Haidong 《ZTE Communications》 2024年第4期89-96,共8页
As an important branch of federated learning,vertical federated learning(VFL)enables multiple institutions to train on the same user samples,bringing considerable industry benefits.However,VFL needs to exchange user f... As an important branch of federated learning,vertical federated learning(VFL)enables multiple institutions to train on the same user samples,bringing considerable industry benefits.However,VFL needs to exchange user features among multiple institutions,which raises concerns about privacy leakage.Moreover,existing multi-party VFL privacy-preserving schemes suffer from issues such as poor reli-ability and high communication overhead.To address these issues,we propose a privacy protection scheme for four institutional VFLs,named FVFL.A hierarchical framework is first introduced to support federated training among four institutions.We also design a verifiable repli-cated secret sharing(RSS)protocol(32)-sharing and combine it with homomorphic encryption to ensure the reliability of FVFL while ensuring the privacy of features and intermediate results of the four institutions.Our theoretical analysis proves the reliability and security of the pro-posed FVFL.Extended experiments verify that the proposed scheme achieves excellent performance with a low communication overhead. 展开更多
关键词 vertical federated learning privacy protection replicated secret sharing
在线阅读 下载PDF
Vertical Federated Learning Based on Consortium Blockchain for Data Sharing in Mobile Edge Computing
4
作者 Yonghao Zhang Yongtang Wu +2 位作者 Tao Li Hui Zhou Yuling Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期345-361,共17页
The data in Mobile Edge Computing(MEC)contains tremendousmarket value,and data sharing canmaximize the usefulness of the data.However,certain data is quite sensitive,and sharing it directly may violate privacy.Vertica... The data in Mobile Edge Computing(MEC)contains tremendousmarket value,and data sharing canmaximize the usefulness of the data.However,certain data is quite sensitive,and sharing it directly may violate privacy.Vertical Federated Learning(VFL)is a secure distributed machine learning framework that completes joint model training by passing encryptedmodel parameters rather than raw data,so there is no data privacy leakage during the training process.Therefore,the VFL can build a bridge between data demander and owner to realize data sharing while protecting data privacy.Typically,the VFL requires a third party for key distribution and decryption of training results.In this article,we employ the consortium blockchain instead of the traditional third party and design a VFL architecture based on the consortium blockchain for data sharing in MEC.More specifically,we propose a V-Raft consensus algorithm based on Verifiable Random Functions(VRFs),which is a variant of the Raft.The VRaft is able to elect leader quickly and stably to assist data demander and owner to complete data sharing by VFL.Moreover,we apply secret sharing todistribute the private key to avoid the situationwhere the training result cannot be decrypted if the leader crashes.Finally,we analyzed the performance of the V-Raft and carried out simulation experiments,and the results show that compared with Raft,the V-Raft has higher efficiency and better scalability. 展开更多
关键词 Mobile edge computing vertical federated learning consortium blockchain consensus algorithm
在线阅读 下载PDF
Blockchain-Based Architectural Framework for Vertical Federated Learning
5
作者 QIAN Chen ZHU Wenjing 《Journal of Donghua University(English Edition)》 CAS 2022年第3期211-219,共9页
The introduction of blockchain to federated learning(FL)is a promising solution to enable anonymous clients to collaboratively learn a shared prediction model using local data while avoiding the risk caused by the cen... The introduction of blockchain to federated learning(FL)is a promising solution to enable anonymous clients to collaboratively learn a shared prediction model using local data while avoiding the risk caused by the central server.However,the current researches only apply a shallow convergence between the two technologies.The aroused problems,such as the unsuitable consensus,the lack of incentive mechanism,and the incompetence of handling vertically partitioned data,make the blockchain-based FL exist in name only.This paper puts forward a novel blockchain-based framework for vertical FL with a specified consensus and incentive.Moreover,a real-world example is demonstrated to prove the practicability of our work. 展开更多
关键词 vertical federated learning(FL) blockchain smart contract incentive mechanism
在线阅读 下载PDF
An embedded vertical‐federated feature selection algorithm based on particle swarm optimisation 被引量:1
6
作者 Yong Zhang Ying Hu +4 位作者 Xiaozhi Gao Dunwei Gong Yinan Guo Kaizhou Gao Wanqiu Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期734-754,共21页
In real life,a large amount of data describing the same learning task may be stored in different institutions(called participants),and these data cannot be shared among par-ticipants due to privacy protection.The case... In real life,a large amount of data describing the same learning task may be stored in different institutions(called participants),and these data cannot be shared among par-ticipants due to privacy protection.The case that different attributes/features of the same instance are stored in different institutions is called vertically distributed data.The pur-pose of vertical‐federated feature selection(FS)is to reduce the feature dimension of vertical distributed data jointly without sharing local original data so that the feature subset obtained has the same or better performance as the original feature set.To solve this problem,in the paper,an embedded vertical‐federated FS algorithm based on particle swarm optimisation(PSO‐EVFFS)is proposed by incorporating evolutionary FS into the SecureBoost framework for the first time.By optimising both hyper‐parameters of the XGBoost model and feature subsets,PSO‐EVFFS can obtain a feature subset,which makes the XGBoost model more accurate.At the same time,since different participants only share insensitive parameters such as model loss function,PSO‐EVFFS can effec-tively ensure the privacy of participants'data.Moreover,an ensemble ranking strategy of feature importance based on the XGBoost tree model is developed to effectively remove irrelevant features on each participant.Finally,the proposed algorithm is applied to 10 test datasets and compared with three typical vertical‐federated learning frameworks and two variants of the proposed algorithm with different initialisation strategies.Experi-mental results show that the proposed algorithm can significantly improve the classifi-cation performance of selected feature subsets while fully protecting the data privacy of all participants. 展开更多
关键词 Evolutionary optimization feature selection privacy protection vertical‐federated learning
在线阅读 下载PDF
IHVFL: a privacy-enhanced intention-hiding vertical federated learning framework for medical data
7
作者 Fei Tang Shikai Liang +1 位作者 Guowei Ling Jinyong Shan 《Cybersecurity》 EI CSCD 2024年第2期96-112,共17页
Vertical Federated Learning(VFL)has many applications in the field of smart healthcare with excellent performance.However,current VFL systems usually primarily focus on the privacy protection during model training,whi... Vertical Federated Learning(VFL)has many applications in the field of smart healthcare with excellent performance.However,current VFL systems usually primarily focus on the privacy protection during model training,while the preparation of training data receives little attention.In real-world applications,like smart healthcare,the process of the training data preparation may involve some participant's intention which could be privacy information for this partici-pant.To protect the privacy of the model training intention,we describe the idea of Intention-Hiding Vertical Feder-ated Learning(IHVFL)and illustrate a framework to achieve this privacy-preserving goal.First,we construct two secure screening protocols to enhance the privacy protection in feature engineering.Second,we implement the work of sample alignment bases on a novel private set intersection protocol.Finally,we use the logistic regression algorithm to demonstrate the process of IHVFL.Experiments show that our model can perform better efficiency(less than 5min)and accuracy(97%)on Breast Cancer medical dataset while maintaining the intention-hiding goal. 展开更多
关键词 Medical data vertical federated learning Privacy-presserving Intention-hiding Logistic regression
原文传递
FSRPCL:Privacy-Preserve Federated Social Relationship Prediction with Contrastive Learning
8
作者 Hanwen Liu Nianzhe Li +2 位作者 Huaizhen Kou Shunmei Meng Qianmu Li 《Tsinghua Science and Technology》 2025年第4期1762-1781,共20页
Cross-Platform Social Relationship Prediction(CPSRP)aims to utilize users’data information on multiple platforms to enhance the performance of social relationship prediction,thereby promoting socioeconomic developmen... Cross-Platform Social Relationship Prediction(CPSRP)aims to utilize users’data information on multiple platforms to enhance the performance of social relationship prediction,thereby promoting socioeconomic development.Due to the highly sensitive nature of users’data in terms of privacy,CPSRP typically introduces various privacy-preserving mechanisms to safeguard users’confidential information.Although the introduction mechanism guarantees the security of the users’private information,it tends to degrade the performance of the social relationship prediction.Additionally,existing social relationship prediction schemes overlook the interdependencies among items invoked in a user behavior sequence.For this purpose,we propose a novel privacy-preserve Federated Social Relationship Prediction with Contrastive Learning framework called FSRPCL,which is a multi-task learning framework based on vertical federated learning.Specifically,the users’rating information is perturbed with a bounded differential privacy technology,and then the users’sequential representation information acquired through Transformer is applied for social relationship prediction and contrastive learning.Furthermore,each client uploads their respective weight information to the server,and the server aggregates the weight information and distributes it purposes to each client for updating.Numerous experiments on real-world datasets prove that FSRPCL delivers exceptional performance in social relationship prediction and privacy preservation,and effectively minimizes the impact of privacy-preserving technology on social relationship prediction accuracy. 展开更多
关键词 social relationship prediction contrastive learning vertical federated learning
原文传递
Federated Abnormal Heart Sound Detection with Weak to No Labels
9
作者 Wanyong Qiu Chen Quan +5 位作者 Yongzi Yu Eda Kara Kun Qian Bin Hu Bjorn W.Schuller Yoshiharu Yamamoto 《Cyborg and Bionic Systems》 2024年第1期91-107,共17页
Cardiovascular diseases are a prominent cause of mortality,emphasizing the need for early prevention and diagnosis.Utilizing artificial intelligence(AI)models,heart sound analysis emerges as a noninvasive and universa... Cardiovascular diseases are a prominent cause of mortality,emphasizing the need for early prevention and diagnosis.Utilizing artificial intelligence(AI)models,heart sound analysis emerges as a noninvasive and universally applicable approach for assessing cardiovascular health conditions.However,real-world medical data are dispersed across medical institutions,forming“data islands”due to data sharing limitations for security reasons.To this end,federated learning(FL)has been extensively employed in the medical field,which can effectively model across multiple institutions.Additionally,conventional supervised classification methods require fully labeled data classes,e.g.,binary classification requires labeling of positive and negative samples.Nevertheless,the process of labeling healthcare data is timeconsuming and labor-intensive,leading to the possibility of mislabeling negative samples.In this study,we validate an FL framework with a naive positive-unlabeled(PU)learning strategy.Semisupervised FL model can directly learn from a limited set of positive samples and an extensive pool of unlabeled samples.Our emphasis is on vertical-FL to enhance collaboration across institutions with different medical record feature spaces.Additionally,our contribution extends to feature importance analysis,where we explore 6 methods and provide practical recommendations for detecting abnormal heart sounds.The study demonstrated an impressive accuracy of 84%,comparable to outcomes in supervised learning,thereby advancing the application of FL in abnormal heart sound detection. 展开更多
关键词 federated learning semi supervised learning feature importance analysis vertical federated learning abnormal heart sound detection artificial intelligence ai modelsheart sound analysis cardiovascular diseases weak labels
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部