期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Improving atmospheric pressure vertical correction model using Gaussian function 被引量:1
1
作者 Baoshuang Zhang Junyu Li +6 位作者 Lilong Liu Yibin Yao Liangke Huang Chao Ren Hongchang He Tengxu Zhang Yuxin Wang 《Geodesy and Geodynamics》 2025年第1期67-74,共8页
The Zenith Hydrostatic Delay(ZHD)is essential for high-precision Global Navigation Satellite System(GNSS)and Very Long Baseline Interferometry(VLBI)data processing.Accurate estimation of ZHD relies on in situ atmosphe... The Zenith Hydrostatic Delay(ZHD)is essential for high-precision Global Navigation Satellite System(GNSS)and Very Long Baseline Interferometry(VLBI)data processing.Accurate estimation of ZHD relies on in situ atmospheric pressure,which is primarily variable in the vertical direction.Current atmospheric pressure is either site-specific or has limited spatial coverage,necessitating vertical corrections for broader applicability.This study introduces a model that uses a Gaussian function for the vertical correction of atmospheric pressure when in situ meteorological observations are unavailable.Validation with the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis(ERA5)reveals an average Bias and RMS for the new model of 0.31 h Pa and 2.96 h Pa,respectively.This corresponds to improvements of 37.5%and 80.3%in terms of RMS compared to two commonly used models(T0and Tvmodels)that require in situ meteorological observations,respectively.Additional validation with radiosonde data shows an average Bias and RMS of 1.85 h Pa and 4.87 h Pa,corresponding to the improvement of 42.8%and 71.1%in RMS compared with T0and Tv models,respectively.These accuracies are sufficient for calculating ZHD to an accuracy of 1 mm by performing atmospheric pressure vertical correction.The new model can correct atmospheric pressure from meteorological stations or numerical weather forecasts to different heights of the troposphere. 展开更多
关键词 ATMOSPHERIC pressure vertical correction Zenith hydrostatic delay(ZHD) Gauss function ERA5
原文传递
Research on variable-speed scanning method for airborne area-array whiskbroom imaging system based on vertical flight path correction
2
作者 JIN Jia-Rong HAN Gui-Cheng +2 位作者 ANG Chong-Ru WU Ren-Fei WANG Yue-Ming 《红外与毫米波学报》 北大核心 2025年第4期511-519,共9页
Airborne area-array whisk-broom imaging systems typically adopt constant-speed scanning schemes.For large-inertia scanning systems,constant-speed scanning requires substantial time to complete the reversal motion,redu... Airborne area-array whisk-broom imaging systems typically adopt constant-speed scanning schemes.For large-inertia scanning systems,constant-speed scanning requires substantial time to complete the reversal motion,reducing the system's adaptability to high-speed reversal scanning and decreasing scanning efficiency.This study proposes a novel sinusoidal variable-speed roll scanning strategy,which reduces abrupt changes in speed and acceleration,minimizing time loss during reversals.Based on the forward image motion compensation strategy in the pitch direction,we establish a line-of-sight(LOS)position calculation model with vertical flight path correction(VFPC),ensuring that the central LOS of the scanned image remains stable on the same horizontal line,facilitating accurate image stitching in whisk-broom imaging.Through theoretical analysis and simulation experiments,the proposed method improves the scanning efficiency by approximately 18.6%at a 90o whiskbroom imaging angle under the same speed height ratio conditions.The new VFPC method enables wide-field,high-resolution imaging,achieving single-line LOS horizontal stability with an accuracy of better than O.4 mrad.The research is of great significance to promote the further development of airborne area-array whisk-broom imaging technology toward wider fields of view,higher speed height ratios,and greater scanning efficiency. 展开更多
关键词 airborne remote sensing whisk-broom imaging image motion vertical flight path correction(VFPC) line-of-sight(LOS)stabilization
在线阅读 下载PDF
The ellipsoidal corrections for boundary value problems of deflection of the vertical with ellipsoid boundary 被引量:2
3
作者 Xiangchao Meng Jinhai Yu Yongchao Zhu 《Geodesy and Geodynamics》 2017年第4期292-296,共5页
The boundary value problem of deflections of vertical with ellipsoid boundary is studied in the paper. Based on spherical harmonic series, the ellipsoidal corrections for the boundary value problem are derived so that... The boundary value problem of deflections of vertical with ellipsoid boundary is studied in the paper. Based on spherical harmonic series, the ellipsoidal corrections for the boundary value problem are derived so that it can be well solved. In addition, an imitation arithmetic is given for examining the accuracies of solutions for the boundary value problem as well as its spherical approximation problem, and the computational results illustrate that the boundary value problem has higher accuracy than its spherical approximation problem if deflection of the vertical are measured on geoid. 展开更多
关键词 Disturbing potential Deflection of the vertical Ellipsoid Ellipsoidal correction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部