Seismic safety assessment of gravity dams has become a major concern in many regions of the world while the effects of vertical seismic accelerations on the response of structures remain poorly understood.This paper f...Seismic safety assessment of gravity dams has become a major concern in many regions of the world while the effects of vertical seismic accelerations on the response of structures remain poorly understood.This paper first investigates the effect of including vertical accelerations in the sliding response analysis of gravity dams subjected to a range of historical ground motion records separated in two groups according to their source-to-site distance.Analyses showed that the incidence of vertical accelerations on the sliding response of gravity dams is significantly higher for near-source records than for far- source records.The pseudo-static 30% load combination rule,commonly used in practice to account for the non-simultaneous occurrence of the peak horizontal and vertical accelerations,yielded good approximations of the minimum safety factors against sliding computed from time-history analyses.A method for empirically estimating the vertical response spectra based on horizontal spectra,accounting for the difference in frequency content and amplitudes between the two components is investigated.Results from analyses using spectrum compatible horizontal and vertical synthetic records also approximated well the sliding response of a gravity dam subjected to series of simultaneous horizontal and vertical historical earthquake records.展开更多
The conventional pseudo-static approach often neglects the effect of the vertical' seismic acceleration on the stability of a slope, but some analyses under plane-strain (2D) conditions show a significant effect on...The conventional pseudo-static approach often neglects the effect of the vertical' seismic acceleration on the stability of a slope, but some analyses under plane-strain (2D) conditions show a significant effect on the slope stability. The purpose of this study is to investigate the effect of the vertical acceleration on the safety of three-dimensional (3D) slopes. In the strict framework of limit analysis, a 3D kinematically admissible rotational failure mechanism is adopted here for 3D homogeneous slopes in frictional/cohesive soils. A set of stability charts is presented in a wide range of parameters for 3D slopes under combined horizontal and vertical seismic loading conditions. Accounting for the effects of the vertical seismic acceleration, the difference in safety factors for 3D slopes can exceed 10%, which will significantly overestimate the safety of the 3D slopes.展开更多
The May 12, 2008 Great Wenchuan Earthquake has resulted in more than 68,858 deaths and losses in the hundreds of billions RMB as of May 30, 2008, and these numbers will undoubtedly increase as more information becomes...The May 12, 2008 Great Wenchuan Earthquake has resulted in more than 68,858 deaths and losses in the hundreds of billions RMB as of May 30, 2008, and these numbers will undoubtedly increase as more information becomes available on the extent of the event. Immediately after the earthquake, the China Earthquake Administration (CEA) responded quickly by sending teams of experts to the affected region, eventually including over 60 staff members from the Institute of Engineering Mechanics (IEM). This paper reports preliminary information that has been gathered in the first 18 days after the event, covering seismicity, search and rescue efforts, observed ground motions, and damage and loss estimates. The extensive field investigation has revealed a number of valuable findings that could be useful in improving research in earthquake engineering in the future. Once again, this earthquake has shown that the vertical component of ground motion is as significant as horizontal ground motions in the near-source area. Finally, note that as more information is gathered, the numbers reported in this paper will need to be adjusted accordingly.展开更多
A probability density function of surface elevation is obtained through improvement of the method introduced by Cieslikiewicz who employed the maximum entropy principle to investigate the surface elevation distributio...A probability density function of surface elevation is obtained through improvement of the method introduced by Cieslikiewicz who employed the maximum entropy principle to investigate the surface elevation distribution. The density function can be easily extended to higher order according to demand and is non-negative everywhere, satisfying the basic behavior of the probability, Moreover because the distribution is derived without any assumption about sea waves, it is found from comparison with several accepted distributions that the new form of distribution can be applied in a wider range of wave conditions, In addition, the density function can be used to fit some observed distributions of surface vertical acceleration although something remains unsolved.展开更多
基金Natural Seienee and Engineering Researeh Couneilof Canada(NSERC),Hydro-Qucbcc,Alcanthe "fonds Pour la Formation de Chereheurs et l'Aide ala Recherehe"(FCAR) of Quebec
文摘Seismic safety assessment of gravity dams has become a major concern in many regions of the world while the effects of vertical seismic accelerations on the response of structures remain poorly understood.This paper first investigates the effect of including vertical accelerations in the sliding response analysis of gravity dams subjected to a range of historical ground motion records separated in two groups according to their source-to-site distance.Analyses showed that the incidence of vertical accelerations on the sliding response of gravity dams is significantly higher for near-source records than for far- source records.The pseudo-static 30% load combination rule,commonly used in practice to account for the non-simultaneous occurrence of the peak horizontal and vertical accelerations,yielded good approximations of the minimum safety factors against sliding computed from time-history analyses.A method for empirically estimating the vertical response spectra based on horizontal spectra,accounting for the difference in frequency content and amplitudes between the two components is investigated.Results from analyses using spectrum compatible horizontal and vertical synthetic records also approximated well the sliding response of a gravity dam subjected to series of simultaneous horizontal and vertical historical earthquake records.
基金National Natural Science Foundation of China under Grant No.51508160,No.51479050 and No.51278382National Key Basic Research Program of China under Grant No.2015CB057901+3 种基金the Public Service Sector R&D Project of the Ministry of Water Resource of China under Grant No.201501035-03the Fundamental Research Funds for the Central Universities under Grant No.2014B06814,No.2014B33414 and No.B15020060the 111 Project under Grant No.B13024the Graduate Education Innovation Project of Jiangsu Province of China under Grant No.CXZZ13_0242
文摘The conventional pseudo-static approach often neglects the effect of the vertical' seismic acceleration on the stability of a slope, but some analyses under plane-strain (2D) conditions show a significant effect on the slope stability. The purpose of this study is to investigate the effect of the vertical acceleration on the safety of three-dimensional (3D) slopes. In the strict framework of limit analysis, a 3D kinematically admissible rotational failure mechanism is adopted here for 3D homogeneous slopes in frictional/cohesive soils. A set of stability charts is presented in a wide range of parameters for 3D slopes under combined horizontal and vertical seismic loading conditions. Accounting for the effects of the vertical seismic acceleration, the difference in safety factors for 3D slopes can exceed 10%, which will significantly overestimate the safety of the 3D slopes.
基金Partially the Project 2007CB714205 of the National Basic Research Program of China
文摘The May 12, 2008 Great Wenchuan Earthquake has resulted in more than 68,858 deaths and losses in the hundreds of billions RMB as of May 30, 2008, and these numbers will undoubtedly increase as more information becomes available on the extent of the event. Immediately after the earthquake, the China Earthquake Administration (CEA) responded quickly by sending teams of experts to the affected region, eventually including over 60 staff members from the Institute of Engineering Mechanics (IEM). This paper reports preliminary information that has been gathered in the first 18 days after the event, covering seismicity, search and rescue efforts, observed ground motions, and damage and loss estimates. The extensive field investigation has revealed a number of valuable findings that could be useful in improving research in earthquake engineering in the future. Once again, this earthquake has shown that the vertical component of ground motion is as significant as horizontal ground motions in the near-source area. Finally, note that as more information is gathered, the numbers reported in this paper will need to be adjusted accordingly.
基金This project was financially supported by the National Natural Science Foundation of China(Grant No.49876012,49976003)
文摘A probability density function of surface elevation is obtained through improvement of the method introduced by Cieslikiewicz who employed the maximum entropy principle to investigate the surface elevation distribution. The density function can be easily extended to higher order according to demand and is non-negative everywhere, satisfying the basic behavior of the probability, Moreover because the distribution is derived without any assumption about sea waves, it is found from comparison with several accepted distributions that the new form of distribution can be applied in a wider range of wave conditions, In addition, the density function can be used to fit some observed distributions of surface vertical acceleration although something remains unsolved.