In this study,the entropy weight method was used to measure the agricultural versatility of 30 provinces in China(excluding Tibet,Hong Kong region,Macao region,and Taiwan region of China)from 2008 to 2019.In addition,...In this study,the entropy weight method was used to measure the agricultural versatility of 30 provinces in China(excluding Tibet,Hong Kong region,Macao region,and Taiwan region of China)from 2008 to 2019.In addition,the Theil index method and kernel density estimation were used to analyze the spatiotemporal characteristics of the agricultural versatility in each province.The results show that the agricultural product supply and social security functions rapidly developed,but the economic development was weak.From 2008 to 2019,the total functional index of agriculture increased by 6.74%;the functional index of the agricultural product supply,social security,and ecological services increased by 12.72%,5.53%,and 2.05%,respectively;and the functional index of economic development decreased by 1.32%.The development of agricultural multifunctions in China is regionally heterogeneous.Based on the Theil index method,the differences in the agricultural functions of the three regions are mainly due to intragroup differences.The contribution of intragroup differences of the eight economic regions is significantly lower than that of the three regions.However,intragroup differences dominate the agricultural product supply,economic development,and social security functions and intergroup differences control the ecological service function.The kernel density estimation curve shows that the overall agricultural functional evaluation index increased,among which the agricultural product supply function increased the most.展开更多
Exploring efficient catalyst is critical for the application of persulfate-based advanced oxidation processes(AOPs)for environment remediation.Herein,perovskite CoTiO_(3)was demonstrated an efficient catalyst for pero...Exploring efficient catalyst is critical for the application of persulfate-based advanced oxidation processes(AOPs)for environment remediation.Herein,perovskite CoTiO_(3)was demonstrated an efficient catalyst for peroxymonosulfate(PMS)activation,which shows superior performance compared with single metal oxide system and homogenous systems:It removes 98.2%of hydroxychloroquine(HCQ,drugs for effective treatment of COVID-19)within 20 min at low dose of PMS(0.5 mmol/L),showing high tolerance to the environmental p H range(3.5–10.6)and significant versatility for various refractory organics.Combined with the material characterization and DFT calculations,it is found Co–O–Ti bond in CoTiO_(3)serves as an electron mediator to facilitate the rapid redox cycles of Co^(2+)/Co^(3+)during activation process,thus maintaining the high catalytic activity.Further mechanism exploration showed that fast regeneration of Co^(2+)ensures the production of high concentration of SO_(4)·-and·OH,thus securing the rapid degradation of HCQ.Moreover,a designed CoTiO_(3)-CNT-PVDF membrane reactor can effectively remove refractory pollutant via practically feasible filter-through mode,which delivers a highest removal efficiency and longest operation duration compared with previous developed membrane-based AOPs.The corresponding mechanism revealed in this work can serve as guidelines for the design of advanced heterogenous catalysts and membrane reactors for AOPs.展开更多
Peroxisomes are small,highly dynamic,and multifunctional organelles in eukaryotes.Essential to plant survival,peroxisomes house various crucial metabolic activities,such as degradation of hydrogen peroxide(H2O2),lipid...Peroxisomes are small,highly dynamic,and multifunctional organelles in eukaryotes.Essential to plant survival,peroxisomes house various crucial metabolic activities,such as degradation of hydrogen peroxide(H2O2),lipid metabolism,photorespiration,and hormone biosynthesis and catabolism,and remodel their proteome in response to developmental and environmental changes(Hu et al.2012;Pan and Hu 2018).The four reviews and three research articles in this special issue on plant peroxisomes provide new insights into the diverse roles and dynamics of these structurally simple but functionally complicated organelles,raising exciting new questions for future investigations.展开更多
Flexible photodetectors have garnered significant attention by virtue of their potential applications in environmental monitoring,wearable healthcare,imaging sensing,and portable optical communications.Perovskites sta...Flexible photodetectors have garnered significant attention by virtue of their potential applications in environmental monitoring,wearable healthcare,imaging sensing,and portable optical communications.Perovskites stand out as particularly promising materials for photodetectors,offering exceptional optoelectronic properties,tunable band gaps,low-temperature solution processing,and notable mechanical flexibility.In this review,we explore the latest progress in flexible perovskite photodetectors,emphasizing the strategies developed for photoactive materials and device structures to enhance optoelectronic performance and stability.Additionally,we discuss typical applications of these devices and offer insights into future directions and potential applications.展开更多
Throughout versatile metal compositions and unique structural characteristics,polynary metal atom catalysts(PACs)readily harness synergistic intermetallic effects,significantly boosting the catalytic performances.Thes...Throughout versatile metal compositions and unique structural characteristics,polynary metal atom catalysts(PACs)readily harness synergistic intermetallic effects,significantly boosting the catalytic performances.These catalysts are featured by favorable catalytic activity,stability and selectivity,offering avenues to tackle challenges in energy conversion,environmental protection and chemical synthesis.Nevertheless,an in-depth understanding and comprehensive summary of the structure-performance relationship for the emerging PACs remains elusive.This review embarks from the classification of PACs,delving further into the origins of catalytic activity and mechanisms underpinning performance enhancement.At the beginning,it outlines the fundamental concepts,preparation methods and accurate recognition of PACs.Subsequently,it centers on discussing the origins of activity,strategies for performance optimization,mechanisms of action,and application scenarios across diverse catalytic reactions.Moreover,the unexplored issues and future perspectives of PACs are proposed at the end,stating their pivotal roles in advancing green chemistry and the sustainable energy realm.This review overall aims to provide valuable insight and guidance for the preparation and application of PACs.展开更多
BACKGROUND We have innovatively amalgamated membrane blood purification and centrifugal blood cell separation technologies to address the limitations of current artificial liver support(ALS)models,and develop a versat...BACKGROUND We have innovatively amalgamated membrane blood purification and centrifugal blood cell separation technologies to address the limitations of current artificial liver support(ALS)models,and develop a versatile plasma purification system(VPPS)through centrifugal plasma separation.AIM To investigate the influence of VPPS on long-term rehospitalization and mortality rates among patients with acute-on-chronic liver failure(ACLF).METHODS This real-world,prospective study recruited inpatients diagnosed with ACLF from the Second Xiangya Hospital of Central South University between October 2021 and March 2024.Patients were categorized into the VPPS and non-VPPS groups based on the distinct ALS models administered to them.Self-administered questionnaires,clinical records,and self-reported data served as the primary methods for data collection.The laboratory results were evaluated at six distinct time points.All patients were subjected to follow-up assessments for>12 months.Kaplan-Meier survival analyses and Cox proportional hazards models were used to evaluate the risks of hospitalization and mortality during the follow-up period.RESULTS A cohort of 502 patients diagnosed with ACLF was recruited,with 260 assigned to the VPPS group.On comparing baseline characteristics,the VPPS group exhibited a significantly shorter length of stay,higher incidence of spontaneous peritonitis and pulmonary aspergillosis compared to the non-VPPS group(P<0.05).Agehazard ratio(HR=1.142,95%CI:1.01-1.23,P=0.018),peritonitis(HR=2.825,95%CI:1.07-6.382,P=0.026),albumin(HR=0.67,95%CI:0.46-0.942,P=0.023),total bilirubin(HR=1.26,95%CI:1.01-3.25,P=0.021),international normalized ratio(HR=1.97,95%CI:1.21-2.908,P=0.014),and VPPS/non-VPPS(HR=3.24,95%CI:2.152-4.76,P<0.001)were identified as significant independent predictors of mortality in both univariate and multivariate analyses throughout the follow-up period.Kaplan-Meier survival analyses demonstrated significantly higher rehospitalization and mortality rates in the non-VPPS group compared to the VPPS group during follow-up of≥2 years(log-rank test,P<0.001).CONCLUSION These findings suggest that VPPS is safe and has a positive influence on prognostic outcomes in patients with ACLF.展开更多
Paper and pulp mills generate substantial volumes of wastewater containing lignin-derived compounds that are challenging to degrade using conventional wastewater treatment methods.This study presents a novel biofilm-b...Paper and pulp mills generate substantial volumes of wastewater containing lignin-derived compounds that are challenging to degrade using conventional wastewater treatment methods.This study presents a novel biofilm-based process for enhanced lignin removal in wastewater using the fungus Neurospora discreta,which effectively degrades lignin and forms robust biofilms at the air–liquid interface under specific conditions.The process was optimised using the Taguchi design of experiments approach,and three factors including pH,copper sulphate concentration,and trace element concentration were evaluated at three levels.Experimental data were analysed against three responses:lignin degradation efficiency and the activities of two ligninolytic enzymes(polyphenol oxidase and versatile peroxidase).The results indicated that wastewater pH was the most significant parameter affecting lignin degradation efficiency and enzyme activities.Over 70%lignin degradation was achieved at pH levels of 5 and 6 with copper sulphate concentrations above 4 mg/L,while degradation efficiency drastically dropped to 45%at a pH value of 7.Reversed-phase high-performance liquid chromatography analysis demonstrated the effects of the three factors on the polar and non-polar components of lignin in wastewater,revealing a clear decrease in all peak areas after treatment.Additionally,significant relationships were observed between biofilm properties(including porosity,water retention value,polysaccharide content,and protein content)and lignin removal efficiency.This study also reported for the first time the presence of versatile peroxidase,a ligninolytic enzyme,in Neurospora sp.展开更多
With digital coding technology,reconfigurable intelligent surfaces(RISs)become powerful real-time sys-tems for manipulating electromagnetic(EM)waves.However,most automatic RIS designs involve exten-sive numerical simu...With digital coding technology,reconfigurable intelligent surfaces(RISs)become powerful real-time sys-tems for manipulating electromagnetic(EM)waves.However,most automatic RIS designs involve exten-sive numerical simulations of the unit,including the passive pattern and active devices,requiring high data acquisition and training costs.In addition,for passive patterns,the widely employed random pixe-lated method presents design efficiency and effectiveness challenges due to the massive pixel combina-tions and blocked excitation current flow in discrete patterns.To overcome these two critical problems,we propose a versatile RIS design paradigm with efficient topology representation and a separate design architecture.First,a non-uniform rational B-spline(NURBS)is introduced to represent continuous pat-terns and solve excitation current flow issues.This representation makes it possible to finely tune con-tinuous patterns with several control points,greatly reducing the pattern solution space by 20-fold and facilitating RIS optimization.Then,employing multiport network theory to separate the passive pat-tern and active device from the unit,the separate design architecture significantly reduces the dataset acquisition cost by 62.5%.Through multistep multiport calculation,the multistate EM responses of the RIS under different structural combinations can be quickly obtained with only one prediction of pattern response,thereby achieving dataset and model reuse for different RIS designs.With a hybrid continuous-discrete optimization algorithm,three examples—including two typical high-performance RISs and an ultra-wideband multilayer RIS—are provided to validate the superiority of our paradigm.Our work offers an efficient solution for RIS automatic design,and the resulting structure is expected to boost RIS appli-cations in the fields of wireless communication and sensing.展开更多
1.Introduction Layered van der Waals materials have emerged as a new class of materials with fascinating properties for versatile potential ap-plications owing to their unique atomic structures and ultrathin thickness...1.Introduction Layered van der Waals materials have emerged as a new class of materials with fascinating properties for versatile potential ap-plications owing to their unique atomic structures and ultrathin thickness[1-7].As a subcategory of layered van der Waals mate-rials,group IV monochalcogenides,including Ge(S,Se,Te)and Sn(S,Se,Te),possess similar atomic structures and comparable elec-tronic structures,rendering them becoming promising alternatives for applications in thermoelectric[8],ferroelectric[9-11],photo-catalytic[12],optoelectronic[13-16],and memory devices[17-19].展开更多
Diversity-oriented synthesis is a powerful and interesting synthetic tool for the rapid construction of structurally complex and privileged scaffolds from readily accessible starting materials.To date,diversity-orient...Diversity-oriented synthesis is a powerful and interesting synthetic tool for the rapid construction of structurally complex and privileged scaffolds from readily accessible starting materials.To date,diversity-oriented synthesis mostly relies on the employment of versatile reagents.Versatile reagents can be regulated as controllable and flexible building blocks for multipurpose utilizations.Over the past decade,a variety of multifunctional reagents have been developed.However,most versatile reagents usually need multi-step synthesis,thus restricting their wide application to a large extent.In terms of the practicalities and universalities,we prefer to pay more attention to the utilization of simple and practical versatile reagents with multiple reactivities,mainly including atropaldehyde acetals,aryl methyl ketones,vinylene carbonate,vinyl azides,aryldiazonium salts,rongalite,halodifluoromethyl compounds.Most importantly,these versatile reagents can also play different roles simultaneously in the same reaction,in which their different reactivities are converged into the final target products.Such strategy can not only offer more possibilities for the synthesis of several active pharmaceutical ingredients,but also minimize the occurrence of some side reactions by lessening the varieties of materials.Also,a perspective is given at the end of this review.展开更多
A quantum teleportation network involving multiple users is essential for future quantum internet.So far,controlled quantum teleportation has been demonstrated in a three-user network.However,versatile and controlled ...A quantum teleportation network involving multiple users is essential for future quantum internet.So far,controlled quantum teleportation has been demonstrated in a three-user network.However,versatile and controlled quantum teleportation network involving more users is in demand,which satisfies different combinations of users for practical requirements.Here we propose a highly versatile and controlled teleportation network that can switch among various combinations of different users.We use a single continuous-variable six-partite Greenberger-Horne-Zeilinger(GHZ)state to realize such a task by choosing the different measurement and feedback operations.The controlled teleportation network,which includes one sub-network,two sub-networks and three sub-networks,can be realized for different application of user combinations.Furthermore,the coherent feedback control(CFC)can manipulate and improve the teleportation performance.Our approach is flexible and scalable,and would provide a versatile platform for demonstrations of complex quantum communication and quantum computing protocols.展开更多
Mesenchymal intricate stem cells(MSCs)represent a versatile population of multipotent progenitor cells with remarkable capacity for selfrenewal and differentiation[1].The fate commitment of MSCs is orchestrated by a c...Mesenchymal intricate stem cells(MSCs)represent a versatile population of multipotent progenitor cells with remarkable capacity for selfrenewal and differentiation[1].The fate commitment of MSCs is orchestrated by a complex interplay of intrinsic and extrinsic factors,encompassing signaling pathways,transcriptional regulators,epigenetic modifiers,and microenvironmental cues[2-5].展开更多
The Joint Video Experts Team(JVET)has announced the latest generation of the Versatile Video Coding(VVC,H.266)standard.The in-loop filter in VVC inherits the De-Blocking Filter(DBF)and Sample Adaptive Offset(SAO)of Hi...The Joint Video Experts Team(JVET)has announced the latest generation of the Versatile Video Coding(VVC,H.266)standard.The in-loop filter in VVC inherits the De-Blocking Filter(DBF)and Sample Adaptive Offset(SAO)of High Efficiency Video Coding(HEVC,H.265),and adds the Adaptive Loop Filter(ALF)to minimize the error between the original sample and the decoded sample.However,for chaotic moving video encoding with low bitrates,serious blocking artifacts still remain after in-loop filtering due to the severe quantization distortion of texture details.To tackle this problem,this paper proposes a Convolutional Neural Network(CNN)based VVC in-loop filter for chaotic moving video encoding with low bitrates.First,a blur-aware attention network is designed to perceive the blurring effect and to restore texture details.Then,a deep in-loop filtering method is proposed based on the blur-aware network to replace the VVC in-loop filter.Finally,experimental results show that the proposed method could averagely save 8.3%of bit consumption at similar subjective quality.Meanwhile,under close bit rate consumption,the proposed method could reconstruct more texture information,thereby significantly reducing the blocking artifacts and improving the visual quality.展开更多
Leggings have been a staple in the fashion industry for decades,consistently remaining one of the most popular and versatile items of clothing.They have achieved viral status and continue to be a highly sought-after f...Leggings have been a staple in the fashion industry for decades,consistently remaining one of the most popular and versatile items of clothing.They have achieved viral status and continue to be a highly sought-after fashion item,transcending age and cultural barriers.The body-hugging style of leggings has remained in vogue,attracting young people of all ages and backgrounds.With their enduring popularity,it’s likely that leggings will remain a fashion staple for years to come.展开更多
为了提高FPGA(Field Programmable Gate Array)的布通率并优化电路的连线长度,在模拟退火算法的基础上,该文提出一种新的FPGA布局算法。该算法在不同的温度区间采用不同的评价函数,高温阶段采用半周长法进行快速优化布局,低温阶段在...为了提高FPGA(Field Programmable Gate Array)的布通率并优化电路的连线长度,在模拟退火算法的基础上,该文提出一种新的FPGA布局算法。该算法在不同的温度区间采用不同的评价函数,高温阶段采用半周长法进行快速优化布局,低温阶段在评价函数中加入变量因子并进行适度的回火处理,以此来优化布局。实验表明,该算法提高了布通率,优化了连线长度,与最具代表性的VPR(Versatile Place and Route)布局算法相比布线通道宽度提高了近6%,电路总的连线长度降低了4-23%。展开更多
Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certi...Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certified photovoltaic efficiencies have reached 22.1%. Compared to bulk halide perovskites, low-dimensional ones exhibited novel physical properties. The photoluminescence quantum yields of perovskite quantum dots are close to 100%. The external quantum efficiencies and current efficiencies of perovskite quantum dot light-emitting diodes have reached 8% and 43 cd A^(-1),respectively, and their nanowire lasers show ultralow-threshold room-temperature lasing with emission tunability and ease of synthesis. Perovskite nanowire photodetectors reached a responsivity of 10 A W^(-1)and a specific normalized detectivity of the order of 10^(12 )Jones. Different from most reported reviews focusing on photovoltaic applications, we summarize the rapid progress in the study of low-dimensional perovskite materials, as well as their promising applications in optoelectronic devices. In particular, we review the wide tunability of fabrication methods and the state-of-the-art research outputs of low-dimensional perovskite optoelectronic devices. Finally, the anticipated challenges and potential for this exciting research are proposed.展开更多
A novel Zn-based metal–organic framework Zn(dobdc)(datz)[Zn_(2)(H2dobdc)(datz)2$1.5DMF]with plentiful hydrogen bond donors(HBD)groups was facilely synthesized from mixed ligands.The dual activation of metal Zn sites ...A novel Zn-based metal–organic framework Zn(dobdc)(datz)[Zn_(2)(H2dobdc)(datz)2$1.5DMF]with plentiful hydrogen bond donors(HBD)groups was facilely synthesized from mixed ligands.The dual activation of metal Zn sites and HBD groups for epoxides by forming Zn–O adduct and hydrogen bonds facilitated the ring-opening of epoxide substrate,which is critical for the subsequent CO_(2) fixation.Also,the existence of micropores and N-rich units in Zn(dobdc)(datz)afforded affinity towards CO_(2),which is beneficial to further improvement on catalytic CO_(2) conversion performance.Satisfactorily,Zn(dobdc)(datz)/Bu4NBr system was proved efficient heterogeneous catalyst for the CO_(2) cycloaddition with epoxides,and 98%propylene carbonate yield was obtained under mild conditions(80C,1.5 MPa and solvent-free).In addition,Zn(dobdc)(datz)/Bu4NBr exhibited remarkable versatility to different epoxides and could be completely recycled over six runs with high catalytic activity.The highly stable,easily recycle and solvent-free Zn-based MOF reported here displays eco-friendly and efficient performance to CO_(2)conversion.展开更多
文摘In this study,the entropy weight method was used to measure the agricultural versatility of 30 provinces in China(excluding Tibet,Hong Kong region,Macao region,and Taiwan region of China)from 2008 to 2019.In addition,the Theil index method and kernel density estimation were used to analyze the spatiotemporal characteristics of the agricultural versatility in each province.The results show that the agricultural product supply and social security functions rapidly developed,but the economic development was weak.From 2008 to 2019,the total functional index of agriculture increased by 6.74%;the functional index of the agricultural product supply,social security,and ecological services increased by 12.72%,5.53%,and 2.05%,respectively;and the functional index of economic development decreased by 1.32%.The development of agricultural multifunctions in China is regionally heterogeneous.Based on the Theil index method,the differences in the agricultural functions of the three regions are mainly due to intragroup differences.The contribution of intragroup differences of the eight economic regions is significantly lower than that of the three regions.However,intragroup differences dominate the agricultural product supply,economic development,and social security functions and intergroup differences control the ecological service function.The kernel density estimation curve shows that the overall agricultural functional evaluation index increased,among which the agricultural product supply function increased the most.
文摘现有的基于卷积神经网络(convolutional neural network,CNN)的环路滤波器倾向于将多个网络应用于不同的量化参数(quantization parameter,QP),消耗训练模型中的大量资源,并增加内存负担。针对这一问题,提出一种基于CNN的QP自适应环路滤波器。首先,设计一个轻量级分类网络,按照滤波难易程度将编码树单元(coding tree unit,CTU)划分为难、中、易3类;然后,构建3个融合了特征信息增强融合模块的基于CNN的滤波网络,以满足不同QP下的3类CTU滤波需求。将所提出的环路滤波器集成到多功能视频编码(versatile video coding,VVC)标准H.266/VVC的测试软件VTM 6.0中,替换原有的去块效应滤波器(deblocking filter,DBF)、样本自适应偏移(sample adaptive offset,SAO)滤波器和自适应环路滤波器。实验结果表明,该方法平均降低了3.14%的比特率差值(Bjøntegaard delta bit rate,BD-BR),与其他基于CNN的环路滤波器相比,显著提高了压缩效率,并减少了压缩伪影。
基金supported by the National Natural Science Foundation of China(Nos.52100084 and 52170155)Shenzhen Natural Science Fund(the stable support plan program,No.GXWD20231129152058003)。
文摘Exploring efficient catalyst is critical for the application of persulfate-based advanced oxidation processes(AOPs)for environment remediation.Herein,perovskite CoTiO_(3)was demonstrated an efficient catalyst for peroxymonosulfate(PMS)activation,which shows superior performance compared with single metal oxide system and homogenous systems:It removes 98.2%of hydroxychloroquine(HCQ,drugs for effective treatment of COVID-19)within 20 min at low dose of PMS(0.5 mmol/L),showing high tolerance to the environmental p H range(3.5–10.6)and significant versatility for various refractory organics.Combined with the material characterization and DFT calculations,it is found Co–O–Ti bond in CoTiO_(3)serves as an electron mediator to facilitate the rapid redox cycles of Co^(2+)/Co^(3+)during activation process,thus maintaining the high catalytic activity.Further mechanism exploration showed that fast regeneration of Co^(2+)ensures the production of high concentration of SO_(4)·-and·OH,thus securing the rapid degradation of HCQ.Moreover,a designed CoTiO_(3)-CNT-PVDF membrane reactor can effectively remove refractory pollutant via practically feasible filter-through mode,which delivers a highest removal efficiency and longest operation duration compared with previous developed membrane-based AOPs.The corresponding mechanism revealed in this work can serve as guidelines for the design of advanced heterogenous catalysts and membrane reactors for AOPs.
文摘Peroxisomes are small,highly dynamic,and multifunctional organelles in eukaryotes.Essential to plant survival,peroxisomes house various crucial metabolic activities,such as degradation of hydrogen peroxide(H2O2),lipid metabolism,photorespiration,and hormone biosynthesis and catabolism,and remodel their proteome in response to developmental and environmental changes(Hu et al.2012;Pan and Hu 2018).The four reviews and three research articles in this special issue on plant peroxisomes provide new insights into the diverse roles and dynamics of these structurally simple but functionally complicated organelles,raising exciting new questions for future investigations.
基金supported by the grants from the National Key Research and Development Program of China 2023YFC2505900support from State Key Laboratory of Photovoltaic Science and Technology 202401030303.
文摘Flexible photodetectors have garnered significant attention by virtue of their potential applications in environmental monitoring,wearable healthcare,imaging sensing,and portable optical communications.Perovskites stand out as particularly promising materials for photodetectors,offering exceptional optoelectronic properties,tunable band gaps,low-temperature solution processing,and notable mechanical flexibility.In this review,we explore the latest progress in flexible perovskite photodetectors,emphasizing the strategies developed for photoactive materials and device structures to enhance optoelectronic performance and stability.Additionally,we discuss typical applications of these devices and offer insights into future directions and potential applications.
基金supported by the National Natural Science Foundation of China(22179089)。
文摘Throughout versatile metal compositions and unique structural characteristics,polynary metal atom catalysts(PACs)readily harness synergistic intermetallic effects,significantly boosting the catalytic performances.These catalysts are featured by favorable catalytic activity,stability and selectivity,offering avenues to tackle challenges in energy conversion,environmental protection and chemical synthesis.Nevertheless,an in-depth understanding and comprehensive summary of the structure-performance relationship for the emerging PACs remains elusive.This review embarks from the classification of PACs,delving further into the origins of catalytic activity and mechanisms underpinning performance enhancement.At the beginning,it outlines the fundamental concepts,preparation methods and accurate recognition of PACs.Subsequently,it centers on discussing the origins of activity,strategies for performance optimization,mechanisms of action,and application scenarios across diverse catalytic reactions.Moreover,the unexplored issues and future perspectives of PACs are proposed at the end,stating their pivotal roles in advancing green chemistry and the sustainable energy realm.This review overall aims to provide valuable insight and guidance for the preparation and application of PACs.
基金Supported by Natural Science Foundation of Hunan Province,China,No.2022JJ30842 and No.2024JJ6560Clinical Medical Research Center for Viral Hepatitis of Hunan Province,No.2023SK4009Beijing iGandan Foundation,No.RGGJJ-2021-017 and No.iGandanF-1082022-RGG023.
文摘BACKGROUND We have innovatively amalgamated membrane blood purification and centrifugal blood cell separation technologies to address the limitations of current artificial liver support(ALS)models,and develop a versatile plasma purification system(VPPS)through centrifugal plasma separation.AIM To investigate the influence of VPPS on long-term rehospitalization and mortality rates among patients with acute-on-chronic liver failure(ACLF).METHODS This real-world,prospective study recruited inpatients diagnosed with ACLF from the Second Xiangya Hospital of Central South University between October 2021 and March 2024.Patients were categorized into the VPPS and non-VPPS groups based on the distinct ALS models administered to them.Self-administered questionnaires,clinical records,and self-reported data served as the primary methods for data collection.The laboratory results were evaluated at six distinct time points.All patients were subjected to follow-up assessments for>12 months.Kaplan-Meier survival analyses and Cox proportional hazards models were used to evaluate the risks of hospitalization and mortality during the follow-up period.RESULTS A cohort of 502 patients diagnosed with ACLF was recruited,with 260 assigned to the VPPS group.On comparing baseline characteristics,the VPPS group exhibited a significantly shorter length of stay,higher incidence of spontaneous peritonitis and pulmonary aspergillosis compared to the non-VPPS group(P<0.05).Agehazard ratio(HR=1.142,95%CI:1.01-1.23,P=0.018),peritonitis(HR=2.825,95%CI:1.07-6.382,P=0.026),albumin(HR=0.67,95%CI:0.46-0.942,P=0.023),total bilirubin(HR=1.26,95%CI:1.01-3.25,P=0.021),international normalized ratio(HR=1.97,95%CI:1.21-2.908,P=0.014),and VPPS/non-VPPS(HR=3.24,95%CI:2.152-4.76,P<0.001)were identified as significant independent predictors of mortality in both univariate and multivariate analyses throughout the follow-up period.Kaplan-Meier survival analyses demonstrated significantly higher rehospitalization and mortality rates in the non-VPPS group compared to the VPPS group during follow-up of≥2 years(log-rank test,P<0.001).CONCLUSION These findings suggest that VPPS is safe and has a positive influence on prognostic outcomes in patients with ACLF.
基金supported by the Leverhulme Trust Research Project(Grant No.RPG-2020-021).
文摘Paper and pulp mills generate substantial volumes of wastewater containing lignin-derived compounds that are challenging to degrade using conventional wastewater treatment methods.This study presents a novel biofilm-based process for enhanced lignin removal in wastewater using the fungus Neurospora discreta,which effectively degrades lignin and forms robust biofilms at the air–liquid interface under specific conditions.The process was optimised using the Taguchi design of experiments approach,and three factors including pH,copper sulphate concentration,and trace element concentration were evaluated at three levels.Experimental data were analysed against three responses:lignin degradation efficiency and the activities of two ligninolytic enzymes(polyphenol oxidase and versatile peroxidase).The results indicated that wastewater pH was the most significant parameter affecting lignin degradation efficiency and enzyme activities.Over 70%lignin degradation was achieved at pH levels of 5 and 6 with copper sulphate concentrations above 4 mg/L,while degradation efficiency drastically dropped to 45%at a pH value of 7.Reversed-phase high-performance liquid chromatography analysis demonstrated the effects of the three factors on the polar and non-polar components of lignin in wastewater,revealing a clear decrease in all peak areas after treatment.Additionally,significant relationships were observed between biofilm properties(including porosity,water retention value,polysaccharide content,and protein content)and lignin removal efficiency.This study also reported for the first time the presence of versatile peroxidase,a ligninolytic enzyme,in Neurospora sp.
基金supported by the National Key Research and Development Program of China(2023YFB3811502)the National Science Foundation of China(62225108)+5 种基金the Fundamental Research Funds for the Central Universities(2242022k60003)the National Natural Science Foundation of China(62288101 and 62201139)the Jiangsu Province Frontier Leading Technology Basic Research Project(BK20212002)the Jiangsu Provincial Scientific Research Center of Applied Mathematics(BK20233002)the Fundamental Research Funds for the Central Universities(2242024RCB0005 and 2242024K30009)the 111 Project(111-2-05).
文摘With digital coding technology,reconfigurable intelligent surfaces(RISs)become powerful real-time sys-tems for manipulating electromagnetic(EM)waves.However,most automatic RIS designs involve exten-sive numerical simulations of the unit,including the passive pattern and active devices,requiring high data acquisition and training costs.In addition,for passive patterns,the widely employed random pixe-lated method presents design efficiency and effectiveness challenges due to the massive pixel combina-tions and blocked excitation current flow in discrete patterns.To overcome these two critical problems,we propose a versatile RIS design paradigm with efficient topology representation and a separate design architecture.First,a non-uniform rational B-spline(NURBS)is introduced to represent continuous pat-terns and solve excitation current flow issues.This representation makes it possible to finely tune con-tinuous patterns with several control points,greatly reducing the pattern solution space by 20-fold and facilitating RIS optimization.Then,employing multiport network theory to separate the passive pat-tern and active device from the unit,the separate design architecture significantly reduces the dataset acquisition cost by 62.5%.Through multistep multiport calculation,the multistate EM responses of the RIS under different structural combinations can be quickly obtained with only one prediction of pattern response,thereby achieving dataset and model reuse for different RIS designs.With a hybrid continuous-discrete optimization algorithm,three examples—including two typical high-performance RISs and an ultra-wideband multilayer RIS—are provided to validate the superiority of our paradigm.Our work offers an efficient solution for RIS automatic design,and the resulting structure is expected to boost RIS appli-cations in the fields of wireless communication and sensing.
基金This work was financially supported by the China Postdoc-toral Science Foundation(Nos.2020M673174 and2019M663688)The authors acknowledge the European Research Executive Agency(Project No.101079184-FUNLAYERS).
文摘1.Introduction Layered van der Waals materials have emerged as a new class of materials with fascinating properties for versatile potential ap-plications owing to their unique atomic structures and ultrathin thickness[1-7].As a subcategory of layered van der Waals mate-rials,group IV monochalcogenides,including Ge(S,Se,Te)and Sn(S,Se,Te),possess similar atomic structures and comparable elec-tronic structures,rendering them becoming promising alternatives for applications in thermoelectric[8],ferroelectric[9-11],photo-catalytic[12],optoelectronic[13-16],and memory devices[17-19].
基金supported by the National Natural Science Foundation of China(No.22072049)National Key Research and Development Project(No.2022YFE0124100)+2 种基金Major Special Projects of Science and Technology of Ordos(No.2022EEDSKJZDZX003)Program for HUST Academic Frontier Youth Team(No.2019QYTD06)is also acknowledgedChen is also grateful for the financial support from China Scholarship Council(CSC).
文摘Diversity-oriented synthesis is a powerful and interesting synthetic tool for the rapid construction of structurally complex and privileged scaffolds from readily accessible starting materials.To date,diversity-oriented synthesis mostly relies on the employment of versatile reagents.Versatile reagents can be regulated as controllable and flexible building blocks for multipurpose utilizations.Over the past decade,a variety of multifunctional reagents have been developed.However,most versatile reagents usually need multi-step synthesis,thus restricting their wide application to a large extent.In terms of the practicalities and universalities,we prefer to pay more attention to the utilization of simple and practical versatile reagents with multiple reactivities,mainly including atropaldehyde acetals,aryl methyl ketones,vinylene carbonate,vinyl azides,aryldiazonium salts,rongalite,halodifluoromethyl compounds.Most importantly,these versatile reagents can also play different roles simultaneously in the same reaction,in which their different reactivities are converged into the final target products.Such strategy can not only offer more possibilities for the synthesis of several active pharmaceutical ingredients,but also minimize the occurrence of some side reactions by lessening the varieties of materials.Also,a perspective is given at the end of this review.
基金Project supported by the Natural Science Foundation of Shanxi Province of China (Grant No. 202203021221214)the National Natural Science Foundation of China (Grant Nos. 62122044, 62135008, 61925503, 11904218, 12004276, 12147215, and 11834010)+4 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province of China (Grant Nos. 2019L0092 and 2020L0029)the Key Project of the National Key Research and Development Program of China (Grant No. 2022YFA1404500)the Program for the Innovative Talents of Higher Education Institutions of Shanxi Province of Chinathe Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxithe Fund for Shanxi “1331 Project” Key Subjects Construction
文摘A quantum teleportation network involving multiple users is essential for future quantum internet.So far,controlled quantum teleportation has been demonstrated in a three-user network.However,versatile and controlled quantum teleportation network involving more users is in demand,which satisfies different combinations of users for practical requirements.Here we propose a highly versatile and controlled teleportation network that can switch among various combinations of different users.We use a single continuous-variable six-partite Greenberger-Horne-Zeilinger(GHZ)state to realize such a task by choosing the different measurement and feedback operations.The controlled teleportation network,which includes one sub-network,two sub-networks and three sub-networks,can be realized for different application of user combinations.Furthermore,the coherent feedback control(CFC)can manipulate and improve the teleportation performance.Our approach is flexible and scalable,and would provide a versatile platform for demonstrations of complex quantum communication and quantum computing protocols.
文摘Mesenchymal intricate stem cells(MSCs)represent a versatile population of multipotent progenitor cells with remarkable capacity for selfrenewal and differentiation[1].The fate commitment of MSCs is orchestrated by a complex interplay of intrinsic and extrinsic factors,encompassing signaling pathways,transcriptional regulators,epigenetic modifiers,and microenvironmental cues[2-5].
基金supported by National Natural Science Foundation of China under grant U20A20157,61771082,62271096 and 61871062the General Program of Chonqing Natural Science Foundation under grant cstc2021jcyj-msxm X0032+2 种基金the Natural Science Foundation of Chongqing,China(cstc2020jcyj-zdxm X0024)the Science and Technology Research Program of Chongqing Municipal Education Commission under grant KJQN202300632the University Innovation Research Group of Chongqing(CXQT20017)。
文摘The Joint Video Experts Team(JVET)has announced the latest generation of the Versatile Video Coding(VVC,H.266)standard.The in-loop filter in VVC inherits the De-Blocking Filter(DBF)and Sample Adaptive Offset(SAO)of High Efficiency Video Coding(HEVC,H.265),and adds the Adaptive Loop Filter(ALF)to minimize the error between the original sample and the decoded sample.However,for chaotic moving video encoding with low bitrates,serious blocking artifacts still remain after in-loop filtering due to the severe quantization distortion of texture details.To tackle this problem,this paper proposes a Convolutional Neural Network(CNN)based VVC in-loop filter for chaotic moving video encoding with low bitrates.First,a blur-aware attention network is designed to perceive the blurring effect and to restore texture details.Then,a deep in-loop filtering method is proposed based on the blur-aware network to replace the VVC in-loop filter.Finally,experimental results show that the proposed method could averagely save 8.3%of bit consumption at similar subjective quality.Meanwhile,under close bit rate consumption,the proposed method could reconstruct more texture information,thereby significantly reducing the blocking artifacts and improving the visual quality.
文摘Leggings have been a staple in the fashion industry for decades,consistently remaining one of the most popular and versatile items of clothing.They have achieved viral status and continue to be a highly sought-after fashion item,transcending age and cultural barriers.The body-hugging style of leggings has remained in vogue,attracting young people of all ages and backgrounds.With their enduring popularity,it’s likely that leggings will remain a fashion staple for years to come.
文摘随着现场可编程门阵列(Field Programmable Gate Array,FPGA)在现代航天领域的广泛应用,FPGA的单粒子效应(Single Event Effect,SEE)逐渐成为人们的研究热点。选择Microsemi公司Flash型FPGA分布范围最广的可编程逻辑资源VersaTile和对单粒子效应敏感的嵌入式RAM单元RAM Block作为单粒子效应的主要测试对象,提出了两种不同的单粒子效应测试方法;然后,使用仿真工具ModelSim对提出的两种电路的可行性进行了仿真验证;最后,基于自主研发的实验测试平台,在兰州重离子加速器(Heavy Ion Research Facility in Lanzhou,HIRFL)上使用86Kr束进行了束流辐照实验,实验结果表明,测试方法合理有效。
文摘为了提高FPGA(Field Programmable Gate Array)的布通率并优化电路的连线长度,在模拟退火算法的基础上,该文提出一种新的FPGA布局算法。该算法在不同的温度区间采用不同的评价函数,高温阶段采用半周长法进行快速优化布局,低温阶段在评价函数中加入变量因子并进行适度的回火处理,以此来优化布局。实验表明,该算法提高了布通率,优化了连线长度,与最具代表性的VPR(Versatile Place and Route)布局算法相比布线通道宽度提高了近6%,电路总的连线长度降低了4-23%。
基金supported by the Doctoral Program of Higher Education(20130142120075)the Fundamental Research Funds for the Central Universities(HUST:2016YXMS032)National Key Research and Development Program of China(Grant No.2016YFB0700702)
文摘Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certified photovoltaic efficiencies have reached 22.1%. Compared to bulk halide perovskites, low-dimensional ones exhibited novel physical properties. The photoluminescence quantum yields of perovskite quantum dots are close to 100%. The external quantum efficiencies and current efficiencies of perovskite quantum dot light-emitting diodes have reached 8% and 43 cd A^(-1),respectively, and their nanowire lasers show ultralow-threshold room-temperature lasing with emission tunability and ease of synthesis. Perovskite nanowire photodetectors reached a responsivity of 10 A W^(-1)and a specific normalized detectivity of the order of 10^(12 )Jones. Different from most reported reviews focusing on photovoltaic applications, we summarize the rapid progress in the study of low-dimensional perovskite materials, as well as their promising applications in optoelectronic devices. In particular, we review the wide tunability of fabrication methods and the state-of-the-art research outputs of low-dimensional perovskite optoelectronic devices. Finally, the anticipated challenges and potential for this exciting research are proposed.
基金the National Natural Science Foundation of China(21972034,21673060)the State Key Lab of Urban Water Resource and Environment of Harbin Institute of Technology(HIT2019DX12).
文摘A novel Zn-based metal–organic framework Zn(dobdc)(datz)[Zn_(2)(H2dobdc)(datz)2$1.5DMF]with plentiful hydrogen bond donors(HBD)groups was facilely synthesized from mixed ligands.The dual activation of metal Zn sites and HBD groups for epoxides by forming Zn–O adduct and hydrogen bonds facilitated the ring-opening of epoxide substrate,which is critical for the subsequent CO_(2) fixation.Also,the existence of micropores and N-rich units in Zn(dobdc)(datz)afforded affinity towards CO_(2),which is beneficial to further improvement on catalytic CO_(2) conversion performance.Satisfactorily,Zn(dobdc)(datz)/Bu4NBr system was proved efficient heterogeneous catalyst for the CO_(2) cycloaddition with epoxides,and 98%propylene carbonate yield was obtained under mild conditions(80C,1.5 MPa and solvent-free).In addition,Zn(dobdc)(datz)/Bu4NBr exhibited remarkable versatility to different epoxides and could be completely recycled over six runs with high catalytic activity.The highly stable,easily recycle and solvent-free Zn-based MOF reported here displays eco-friendly and efficient performance to CO_(2)conversion.