The wide application of smart contracts allows industry companies to implement some complex distributed collaborative businesses,which involve the calculation of complex functions,such as matrix operations.However,com...The wide application of smart contracts allows industry companies to implement some complex distributed collaborative businesses,which involve the calculation of complex functions,such as matrix operations.However,complex functions such as matrix operations are difficult to implement on Ethereum Virtual Machine(EVM)-based smart contract platforms due to their distributed security environment limitations.Existing off-chain methods often result in a significant reduction in contract execution efficiency,thus a platform software development kit interface implementation method has become a feasible way to reduce overheads,but this method cannot verify operation correctness and may leak sensitive user data.To solve the above problems,we propose a verifiable EVM-based smart contract cross-language implementation scheme for complex operations,especially matrix operations,which can guarantee operation correctness and user privacy while ensuring computational efficiency.In this scheme,a verifiable interaction process is designed to verify the computation process and results,and a matrix blinding technology is introduced to protect sensitive user data in the calculation process.The security analysis and performance tests show that the proposed scheme can satisfy the correctness and privacy of the cross-language implementation of smart contracts at a small additional efficiency cost.展开更多
In recent years,the field of higher education in China has put forward clear requirements for the construction of ideological and political education in courses.Accounting English,as an important course for cultivatin...In recent years,the field of higher education in China has put forward clear requirements for the construction of ideological and political education in courses.Accounting English,as an important course for cultivating international accounting talents,urgently needs to integrate professional ethics and national consciousness into professional teaching[1].In response to the lack of a professional reference system for ideological and political education in accounting English courses,this paper,guided by the OBE educational concept,constructs a three-dimensional objective matrix model based on the international Certified Public Accountant(CPA)competency framework.By deconstructing the IFAC professional competence standards,a mapping mechanism of“professional competence-language carrier-ideological and political content”is proposed.展开更多
Distributed data fusion is essential for numerous applications,yet faces significant privacy security challenges.Federated learning(FL),as a distributed machine learning paradigm,offers enhanced data privacy protectio...Distributed data fusion is essential for numerous applications,yet faces significant privacy security challenges.Federated learning(FL),as a distributed machine learning paradigm,offers enhanced data privacy protection and has attracted widespread attention.Consequently,research increasingly focuses on developing more secure FL techniques.However,in real-world scenarios involving malicious entities,the accuracy of FL results is often compromised,particularly due to the threat of collusion between two servers.To address this challenge,this paper proposes an efficient and verifiable data aggregation protocol with enhanced privacy protection.After analyzing attack methods against prior schemes,we implement key improvements.Specifically,by incorporating cascaded random numbers and perturbation terms into gradients,we strengthen the privacy protection afforded by polynomial masking,effectively preventing information leakage.Furthermore,our protocol features an enhanced verification mechanism capable of detecting collusive behaviors between two servers.Accuracy testing on the MNIST and CIFAR-10 datasets demonstrates that our protocol maintains accuracy comparable to the Federated Averaging Algorithm.In scheme efficiency comparisons,while incurring only a marginal increase in verification overhead relative to the baseline scheme,our protocol achieves an average improvement of 93.13% in privacy protection and verification overhead compared to the state-of-the-art scheme.This result highlights its optimal balance between overall overhead and functionality.A current limitation is that the verificationmechanismcannot precisely pinpoint the source of anomalies within aggregated results when server-side malicious behavior occurs.Addressing this limitation will be a focus of future research.展开更多
To enable efficient sharing of unbounded streaming data,this paper introduces blockchain technology into traditional cloud data,proposing a hybrid on-chain/off-chain storage model.We design a real-time verifiable data...To enable efficient sharing of unbounded streaming data,this paper introduces blockchain technology into traditional cloud data,proposing a hybrid on-chain/off-chain storage model.We design a real-time verifiable data structure that is more suitable for streaming data to achieve efficient real-time verifiability for streaming data.Based on the notch gate hash function and vector commitment,an adaptive notch gate hash tree structure is constructed,and an efficient real-time verifiable data structure for on-chain and off-chain stream data is proposed.The structure binds dynamic root nodes sequentially to ordered leaf nodes in its child nodes.Only the vector commitment of the dynamic root node is stored on the chain,and the complete data structure is stored off-chain.This structure ensures tamperproofing against malicious off-chain cloud servers of off-chain cloud servers.Preserves storage scalability space,realizes the immediate verification of stream data upon arrival,and the computational overhead of on-chain and off-chain hybrid storage verification is only related to the current data volume,which is more practical when dealing with stream data with unpredictable data volume.We formalize this as an efficient real-time verification scheme for stream data in on-chain and off-chain hybrid storage.Finally,the technology’s security and performance were empirically validated through rigorous analysis.展开更多
Federated Learning(FL)has emerged as a promising distributed machine learning paradigm that enables multi-party collaborative training while eliminating the need for raw data sharing.However,its reliance on a server i...Federated Learning(FL)has emerged as a promising distributed machine learning paradigm that enables multi-party collaborative training while eliminating the need for raw data sharing.However,its reliance on a server introduces critical security vulnerabilities:malicious servers can infer private information from received local model updates or deliberately manipulate aggregation results.Consequently,achieving verifiable aggregation without compromising client privacy remains a critical challenge.To address these problem,we propose a reversible data hiding in encrypted domains(RDHED)scheme,which designs joint secret message embedding and extraction mechanism.This approach enables clients to embed secret messages into ciphertext redundancy spaces generated during model encryption.During the server aggregation process,the embedded messages from all clients fuse within the ciphertext space to form a joint embedding message.Subsequently,clients can decrypt the aggregated results and extract this joint embedding message for verification purposes.Building upon this foundation,we integrate the proposed RDHED scheme with linear homomorphic hash and digital signatures to design a verifiable privacy-preserving aggregation protocol for single-server architectures(VPAFL).Theoretical proofs and experimental analyses show that VPAFL can effectively protect user privacy,achieve lightweight computational and communication overhead of users for verification,and present significant advantages with increasing model dimension.展开更多
To prevent server compromise attack and password guessing attacks,an improved and efficient verifier-based key exchange protocol for three-party is proposed,which enables two clients to agree on a common session key w...To prevent server compromise attack and password guessing attacks,an improved and efficient verifier-based key exchange protocol for three-party is proposed,which enables two clients to agree on a common session key with the help of the server.In this protocol,the client stores a plaintext version of the password,while the server stores a verifier for the password.And the protocol uses verifiers to authenticate between clients and the server.The security analysis and performance comparison of the proposed protocol shows that the protocol can resist many familiar attacks including password guessing attacks,server compromise attacks,man-in-the-middle attacks and Denning-Sacco attacks,and it is more efficient.展开更多
Forest certification is considered to be complementary to forest management policies and takes a significant effect on forest product trade. In recent decade, it has been followed with interest and approved by governm...Forest certification is considered to be complementary to forest management policies and takes a significant effect on forest product trade. In recent decade, it has been followed with interest and approved by governments and forestry de-partments in the world. This paper analyzes the influence of forest certification on forest product trade in the world, including the interest in certification in exporting countries and importing countries, trade flow and business competition, and the demands for Certified Forest Products (CFPs) and also discusses the influence of forest certification on forest product trade in China.展开更多
A proxy signature scheme with message recovery using self-certified public key is proposed, which withstands public key substitution attacks, active attacks, and forgery attacks. The proposed scheme accomplishes the t...A proxy signature scheme with message recovery using self-certified public key is proposed, which withstands public key substitution attacks, active attacks, and forgery attacks. The proposed scheme accomplishes the tasks of public key verification, proxy signature verification, and message recovery in a logically single step. In addition, the proposed scheme satisfies all properties of strong proxy signature and does not use secure channel in the communication between the original signer and the proxy signature signer.展开更多
In a strong designated verifier proxy signature scheme, a proxy signer can generate proxy signature on behalf of an original signer, but only the designated verifier can verify the validity of the proxy signature. In ...In a strong designated verifier proxy signature scheme, a proxy signer can generate proxy signature on behalf of an original signer, but only the designated verifier can verify the validity of the proxy signature. In this paper, we first define the security requirements for strong designated verifier proxy signature schemes. And then we construct an identity-based strong designated verifier proxy signature scheme. We argue that the proposed scheme satisfies all of the security requirements.展开更多
In this paper, we point out that Libert and Quisquater’s signcryption scheme cannot provide public verifiability. Then we present a new identity based signcryption scheme using quadratic residue and pairings over ell...In this paper, we point out that Libert and Quisquater’s signcryption scheme cannot provide public verifiability. Then we present a new identity based signcryption scheme using quadratic residue and pairings over elliptic curves. It combines the functionalities of both public verifiability and forward security at the same time. Under the Bilinear Diffie-Hellman and quadratic residue assumption, we describe the new scheme that is more secure and can be some-what more efficient than Libert and Quisquater’s one.展开更多
Federated learning for edge computing is a promising solution in the data booming era,which leverages the computation ability of each edge device to train local models and only shares the model gradients to the centra...Federated learning for edge computing is a promising solution in the data booming era,which leverages the computation ability of each edge device to train local models and only shares the model gradients to the central server.However,the frequently transmitted local gradients could also leak the participants’private data.To protect the privacy of local training data,lots of cryptographic-based Privacy-Preserving Federated Learning(PPFL)schemes have been proposed.However,due to the constrained resource nature of mobile devices and complex cryptographic operations,traditional PPFL schemes fail to provide efficient data confidentiality and lightweight integrity verification simultaneously.To tackle this problem,we propose a Verifiable Privacypreserving Federated Learning scheme(VPFL)for edge computing systems to prevent local gradients from leaking over the transmission stage.Firstly,we combine the Distributed Selective Stochastic Gradient Descent(DSSGD)method with Paillier homomorphic cryptosystem to achieve the distributed encryption functionality,so as to reduce the computation cost of the complex cryptosystem.Secondly,we further present an online/offline signature method to realize the lightweight gradients integrity verification,where the offline part can be securely outsourced to the edge server.Comprehensive security analysis demonstrates the proposed VPFL can achieve data confidentiality,authentication,and integrity.At last,we evaluate both communication overhead and computation cost of the proposed VPFL scheme,the experimental results have shown VPFL has low computation costs and communication overheads while maintaining high training accuracy.展开更多
The subliminal channel is used to send a secret message to an authorized receiver; the message cannot he discovered by any unauthorized receivers. Designated verifier signature (DVS) provide authentication of a mess...The subliminal channel is used to send a secret message to an authorized receiver; the message cannot he discovered by any unauthorized receivers. Designated verifier signature (DVS) provide authentication of a message, we design a DVS scheme with message recovery mechanism and use it as a subliminal channel. In order to share a message among n users securely and allows t or more users can reconstruct the secret in dynamic groups, we combine both subliminal channel and (t, n) threshold cryptography. Then we proposed a threshold subliminal channel which can convey a subliminal message to a group of users based on message-recovery designated verifier signatures. Reconstructing the subliminal message relies on the cooperation of t or more users in the group and they can verify the validity of the subliminal message. Security and performance analysis show that the proposed scheme is secure and efficient.展开更多
A new scheme to verifiably redistribute a secret from the old to new shareholders without reconstruction of the secret is presented in this paper. The scheme allows redistribution between different access structures a...A new scheme to verifiably redistribute a secret from the old to new shareholders without reconstruction of the secret is presented in this paper. The scheme allows redistribution between different access structures and between different threshold schemes. A point worth mentioning is that this verifiable secret redistribution (VSR) scheme can identify dishonest old shareholders during redistribution without any assumption. A certain technique is adopted to verify the correctness of the old shares of the secret. As a result, the scheme is very efficient. It can be applied to proactive secret sharing (PSS) schemes to construct more flexible and practical proactive secret sharing schemes.展开更多
Internet of Things(IoT),which provides the solution of connecting things and devices,has increasingly developed as vital tools to realize intelligent life.Generally,source-limited IoT sensors outsource their data to t...Internet of Things(IoT),which provides the solution of connecting things and devices,has increasingly developed as vital tools to realize intelligent life.Generally,source-limited IoT sensors outsource their data to the cloud,which arises the concerns that the transmission of IoT data is happening without appropriate consideration of the profound security challenges involved.Though encryption technology can guarantee the confidentiality of private data,it hinders the usability of data.Searchable encryption(SE)has been proposed to achieve secure data sharing and searching.However,most of existing SE schemes are designed under conventional hardness assumptions and may be vulnerable to the adversary with quantum computers.Moreover,the untrusted cloud server may perform an unfaithful search execution.To address these problems,in this paper,we propose the first verifiable identity-based keyword search(VIBKS)scheme from lattice.In particular,a lattice-based delegation algorithm is adopted to help the data user to verify both the correctness and the integrity of the search results.Besides,in order to reduce the communication overhead,we refer to the identity-based mechanism.We conduct rigorous proof to demonstrate that the proposed VIBKS scheme is ciphertext indistinguishable secure against the semi-honestbut-curious adversary.In addition,we give the detailed computation and communication complexity of our VIBKS and conduct a series of experiments to validate its efficiency performance.展开更多
Data outsourcing has become an important application of cloud computing.Driven by the growing security demands of data outsourcing applications,sensitive data have to be encrypted before outsourcing.Therefore,how to p...Data outsourcing has become an important application of cloud computing.Driven by the growing security demands of data outsourcing applications,sensitive data have to be encrypted before outsourcing.Therefore,how to properly encrypt data in a way that the encrypted and remotely stored data can still be queried has become a challenging issue.Searchable encryption scheme is proposed to allow users to search over encrypted data.However,most searchable encryption schemes do not consider search result diversification,resulting in information redundancy.In this paper,a verifiable diversity ranking search scheme over encrypted outsourced data is proposed while preserving privacy in cloud computing,which also supports search results verification.The goal is that the ranked documents concerning diversification instead of reading relevant documents that only deliver redundant information.Extensive experiments on real-world dataset validate our analysis and show that our proposed solution is effective for the diversification of documents and verification.展开更多
In this paper, we re-formalize the security notions of universal designated multi verifier signature (UDMVS) schemes. Then the first UDMVS scheme is presented in the standard model (i.e. without random oracles) ba...In this paper, we re-formalize the security notions of universal designated multi verifier signature (UDMVS) schemes. Then the first UDMVS scheme is presented in the standard model (i.e. without random oracles) based on Waters' signature scheme. In this setting, a signature holder can to designate the signature to multi verifiers. Moreover, the security of our proposed scheme is based on the Gap Bilinear Difffie-Hellman assumption.展开更多
Verifiably encrypted signatures are employed when a signer wants to sign a message for a verifier but does not want the verifier to possess his signature on the message until some certain requirements of his are satis...Verifiably encrypted signatures are employed when a signer wants to sign a message for a verifier but does not want the verifier to possess his signature on the message until some certain requirements of his are satisfied. This paper presented new verifiably encrypted signatures from bilinear pairings. The proposed signatures share the properties of simplicity and efficiency with existing verifiably encrypted signature schemes. To support the proposed scheme, it also exhibited security proofs that do not use random oracle assumption. For existential unforgeability, there exist tight security reductions from the proposed verifiably encrypted signature scheme to a strong but reasonable computational assumption.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 62272007,U23B2002in part by the Excellent Young Talents Project of the Beijing Municipal University Teacher Team Construction Support Plan under Grant BPHR202203031+1 种基金in part by the Yunnan Key Laboratory of Blockchain Application Technology under Grant 2021105AG070005(YNB202102)in part by the Open Topics of Key Laboratory of Blockchain Technology and Data Security,The Ministry of Industry and Information Technology of the People’s Republic of China under Grant 20243222。
文摘The wide application of smart contracts allows industry companies to implement some complex distributed collaborative businesses,which involve the calculation of complex functions,such as matrix operations.However,complex functions such as matrix operations are difficult to implement on Ethereum Virtual Machine(EVM)-based smart contract platforms due to their distributed security environment limitations.Existing off-chain methods often result in a significant reduction in contract execution efficiency,thus a platform software development kit interface implementation method has become a feasible way to reduce overheads,but this method cannot verify operation correctness and may leak sensitive user data.To solve the above problems,we propose a verifiable EVM-based smart contract cross-language implementation scheme for complex operations,especially matrix operations,which can guarantee operation correctness and user privacy while ensuring computational efficiency.In this scheme,a verifiable interaction process is designed to verify the computation process and results,and a matrix blinding technology is introduced to protect sensitive user data in the calculation process.The security analysis and performance tests show that the proposed scheme can satisfy the correctness and privacy of the cross-language implementation of smart contracts at a small additional efficiency cost.
文摘In recent years,the field of higher education in China has put forward clear requirements for the construction of ideological and political education in courses.Accounting English,as an important course for cultivating international accounting talents,urgently needs to integrate professional ethics and national consciousness into professional teaching[1].In response to the lack of a professional reference system for ideological and political education in accounting English courses,this paper,guided by the OBE educational concept,constructs a three-dimensional objective matrix model based on the international Certified Public Accountant(CPA)competency framework.By deconstructing the IFAC professional competence standards,a mapping mechanism of“professional competence-language carrier-ideological and political content”is proposed.
基金supported by National Key R&D Program of China(2023YFB3106100)National Natural Science Foundation of China(62102452,62172436)Natural Science Foundation of Shaanxi Province(2023-JCYB-584).
文摘Distributed data fusion is essential for numerous applications,yet faces significant privacy security challenges.Federated learning(FL),as a distributed machine learning paradigm,offers enhanced data privacy protection and has attracted widespread attention.Consequently,research increasingly focuses on developing more secure FL techniques.However,in real-world scenarios involving malicious entities,the accuracy of FL results is often compromised,particularly due to the threat of collusion between two servers.To address this challenge,this paper proposes an efficient and verifiable data aggregation protocol with enhanced privacy protection.After analyzing attack methods against prior schemes,we implement key improvements.Specifically,by incorporating cascaded random numbers and perturbation terms into gradients,we strengthen the privacy protection afforded by polynomial masking,effectively preventing information leakage.Furthermore,our protocol features an enhanced verification mechanism capable of detecting collusive behaviors between two servers.Accuracy testing on the MNIST and CIFAR-10 datasets demonstrates that our protocol maintains accuracy comparable to the Federated Averaging Algorithm.In scheme efficiency comparisons,while incurring only a marginal increase in verification overhead relative to the baseline scheme,our protocol achieves an average improvement of 93.13% in privacy protection and verification overhead compared to the state-of-the-art scheme.This result highlights its optimal balance between overall overhead and functionality.A current limitation is that the verificationmechanismcannot precisely pinpoint the source of anomalies within aggregated results when server-side malicious behavior occurs.Addressing this limitation will be a focus of future research.
基金supported by the National Cryptologic Science Fund of China(Grant No.2025NCSF02020)awarded to Yi Sunsupported by the Natural Science Foundation of Henan Province(Grant No.242300420297)awarded to Yi Sun。
文摘To enable efficient sharing of unbounded streaming data,this paper introduces blockchain technology into traditional cloud data,proposing a hybrid on-chain/off-chain storage model.We design a real-time verifiable data structure that is more suitable for streaming data to achieve efficient real-time verifiability for streaming data.Based on the notch gate hash function and vector commitment,an adaptive notch gate hash tree structure is constructed,and an efficient real-time verifiable data structure for on-chain and off-chain stream data is proposed.The structure binds dynamic root nodes sequentially to ordered leaf nodes in its child nodes.Only the vector commitment of the dynamic root node is stored on the chain,and the complete data structure is stored off-chain.This structure ensures tamperproofing against malicious off-chain cloud servers of off-chain cloud servers.Preserves storage scalability space,realizes the immediate verification of stream data upon arrival,and the computational overhead of on-chain and off-chain hybrid storage verification is only related to the current data volume,which is more practical when dealing with stream data with unpredictable data volume.We formalize this as an efficient real-time verification scheme for stream data in on-chain and off-chain hybrid storage.Finally,the technology’s security and performance were empirically validated through rigorous analysis.
基金supported in part by the National Natural Science Foundation of China under Grants 62102450,62272478the Independent Research Project of a Certain Unit under Grant ZZKY20243127.
文摘Federated Learning(FL)has emerged as a promising distributed machine learning paradigm that enables multi-party collaborative training while eliminating the need for raw data sharing.However,its reliance on a server introduces critical security vulnerabilities:malicious servers can infer private information from received local model updates or deliberately manipulate aggregation results.Consequently,achieving verifiable aggregation without compromising client privacy remains a critical challenge.To address these problem,we propose a reversible data hiding in encrypted domains(RDHED)scheme,which designs joint secret message embedding and extraction mechanism.This approach enables clients to embed secret messages into ciphertext redundancy spaces generated during model encryption.During the server aggregation process,the embedded messages from all clients fuse within the ciphertext space to form a joint embedding message.Subsequently,clients can decrypt the aggregated results and extract this joint embedding message for verification purposes.Building upon this foundation,we integrate the proposed RDHED scheme with linear homomorphic hash and digital signatures to design a verifiable privacy-preserving aggregation protocol for single-server architectures(VPAFL).Theoretical proofs and experimental analyses show that VPAFL can effectively protect user privacy,achieve lightweight computational and communication overhead of users for verification,and present significant advantages with increasing model dimension.
基金The National High Technology Research and Development Program of China(863Program)(No.2001AA115300)the Natural Science Foundation of Liaoning Province(No.20031018,20062023)
文摘To prevent server compromise attack and password guessing attacks,an improved and efficient verifier-based key exchange protocol for three-party is proposed,which enables two clients to agree on a common session key with the help of the server.In this protocol,the client stores a plaintext version of the password,while the server stores a verifier for the password.And the protocol uses verifiers to authenticate between clients and the server.The security analysis and performance comparison of the proposed protocol shows that the protocol can resist many familiar attacks including password guessing attacks,server compromise attacks,man-in-the-middle attacks and Denning-Sacco attacks,and it is more efficient.
文摘Forest certification is considered to be complementary to forest management policies and takes a significant effect on forest product trade. In recent decade, it has been followed with interest and approved by governments and forestry de-partments in the world. This paper analyzes the influence of forest certification on forest product trade in the world, including the interest in certification in exporting countries and importing countries, trade flow and business competition, and the demands for Certified Forest Products (CFPs) and also discusses the influence of forest certification on forest product trade in China.
文摘A proxy signature scheme with message recovery using self-certified public key is proposed, which withstands public key substitution attacks, active attacks, and forgery attacks. The proposed scheme accomplishes the tasks of public key verification, proxy signature verification, and message recovery in a logically single step. In addition, the proposed scheme satisfies all properties of strong proxy signature and does not use secure channel in the communication between the original signer and the proxy signature signer.
基金Supported by the National Natural Science Foun-dation of Chinafor Distinguished Young Scholars(60225007) the Na-tional Research Fundfor the Doctoral Programof Higher Education ofChina(20020248024) the Science and Technology Research Pro-ject of Shanghai (04DZ07067)
文摘In a strong designated verifier proxy signature scheme, a proxy signer can generate proxy signature on behalf of an original signer, but only the designated verifier can verify the validity of the proxy signature. In this paper, we first define the security requirements for strong designated verifier proxy signature schemes. And then we construct an identity-based strong designated verifier proxy signature scheme. We argue that the proposed scheme satisfies all of the security requirements.
文摘In this paper, we point out that Libert and Quisquater’s signcryption scheme cannot provide public verifiability. Then we present a new identity based signcryption scheme using quadratic residue and pairings over elliptic curves. It combines the functionalities of both public verifiability and forward security at the same time. Under the Bilinear Diffie-Hellman and quadratic residue assumption, we describe the new scheme that is more secure and can be some-what more efficient than Libert and Quisquater’s one.
基金supported by the National Natural Science Foundation of China(No.62206238)the Natural Science Foundation of Jiangsu Province(Grant No.BK20220562)the Natural Science Research Project of Universities in Jiangsu Province(No.22KJB520010).
文摘Federated learning for edge computing is a promising solution in the data booming era,which leverages the computation ability of each edge device to train local models and only shares the model gradients to the central server.However,the frequently transmitted local gradients could also leak the participants’private data.To protect the privacy of local training data,lots of cryptographic-based Privacy-Preserving Federated Learning(PPFL)schemes have been proposed.However,due to the constrained resource nature of mobile devices and complex cryptographic operations,traditional PPFL schemes fail to provide efficient data confidentiality and lightweight integrity verification simultaneously.To tackle this problem,we propose a Verifiable Privacypreserving Federated Learning scheme(VPFL)for edge computing systems to prevent local gradients from leaking over the transmission stage.Firstly,we combine the Distributed Selective Stochastic Gradient Descent(DSSGD)method with Paillier homomorphic cryptosystem to achieve the distributed encryption functionality,so as to reduce the computation cost of the complex cryptosystem.Secondly,we further present an online/offline signature method to realize the lightweight gradients integrity verification,where the offline part can be securely outsourced to the edge server.Comprehensive security analysis demonstrates the proposed VPFL can achieve data confidentiality,authentication,and integrity.At last,we evaluate both communication overhead and computation cost of the proposed VPFL scheme,the experimental results have shown VPFL has low computation costs and communication overheads while maintaining high training accuracy.
基金Supported by the National Natural Science Foun-dation of China (60403027)
文摘The subliminal channel is used to send a secret message to an authorized receiver; the message cannot he discovered by any unauthorized receivers. Designated verifier signature (DVS) provide authentication of a message, we design a DVS scheme with message recovery mechanism and use it as a subliminal channel. In order to share a message among n users securely and allows t or more users can reconstruct the secret in dynamic groups, we combine both subliminal channel and (t, n) threshold cryptography. Then we proposed a threshold subliminal channel which can convey a subliminal message to a group of users based on message-recovery designated verifier signatures. Reconstructing the subliminal message relies on the cooperation of t or more users in the group and they can verify the validity of the subliminal message. Security and performance analysis show that the proposed scheme is secure and efficient.
文摘A new scheme to verifiably redistribute a secret from the old to new shareholders without reconstruction of the secret is presented in this paper. The scheme allows redistribution between different access structures and between different threshold schemes. A point worth mentioning is that this verifiable secret redistribution (VSR) scheme can identify dishonest old shareholders during redistribution without any assumption. A certain technique is adopted to verify the correctness of the old shares of the secret. As a result, the scheme is very efficient. It can be applied to proactive secret sharing (PSS) schemes to construct more flexible and practical proactive secret sharing schemes.
基金supported by the National Natural Science Foundation of China(No:62072240)the National Key Research and Development Program of China(No.2020YFB1804604).
文摘Internet of Things(IoT),which provides the solution of connecting things and devices,has increasingly developed as vital tools to realize intelligent life.Generally,source-limited IoT sensors outsource their data to the cloud,which arises the concerns that the transmission of IoT data is happening without appropriate consideration of the profound security challenges involved.Though encryption technology can guarantee the confidentiality of private data,it hinders the usability of data.Searchable encryption(SE)has been proposed to achieve secure data sharing and searching.However,most of existing SE schemes are designed under conventional hardness assumptions and may be vulnerable to the adversary with quantum computers.Moreover,the untrusted cloud server may perform an unfaithful search execution.To address these problems,in this paper,we propose the first verifiable identity-based keyword search(VIBKS)scheme from lattice.In particular,a lattice-based delegation algorithm is adopted to help the data user to verify both the correctness and the integrity of the search results.Besides,in order to reduce the communication overhead,we refer to the identity-based mechanism.We conduct rigorous proof to demonstrate that the proposed VIBKS scheme is ciphertext indistinguishable secure against the semi-honestbut-curious adversary.In addition,we give the detailed computation and communication complexity of our VIBKS and conduct a series of experiments to validate its efficiency performance.
基金This work is supported,in part,by the National Natural Science Foundation of China under grant numbers 61103215in part,by Hunan Provincial Natural Science Foundation of China.
文摘Data outsourcing has become an important application of cloud computing.Driven by the growing security demands of data outsourcing applications,sensitive data have to be encrypted before outsourcing.Therefore,how to properly encrypt data in a way that the encrypted and remotely stored data can still be queried has become a challenging issue.Searchable encryption scheme is proposed to allow users to search over encrypted data.However,most searchable encryption schemes do not consider search result diversification,resulting in information redundancy.In this paper,a verifiable diversity ranking search scheme over encrypted outsourced data is proposed while preserving privacy in cloud computing,which also supports search results verification.The goal is that the ranked documents concerning diversification instead of reading relevant documents that only deliver redundant information.Extensive experiments on real-world dataset validate our analysis and show that our proposed solution is effective for the diversification of documents and verification.
基金Supported by the National Natural Science Foundation of China (60772136)
文摘In this paper, we re-formalize the security notions of universal designated multi verifier signature (UDMVS) schemes. Then the first UDMVS scheme is presented in the standard model (i.e. without random oracles) based on Waters' signature scheme. In this setting, a signature holder can to designate the signature to multi verifiers. Moreover, the security of our proposed scheme is based on the Gap Bilinear Difffie-Hellman assumption.
文摘Verifiably encrypted signatures are employed when a signer wants to sign a message for a verifier but does not want the verifier to possess his signature on the message until some certain requirements of his are satisfied. This paper presented new verifiably encrypted signatures from bilinear pairings. The proposed signatures share the properties of simplicity and efficiency with existing verifiably encrypted signature schemes. To support the proposed scheme, it also exhibited security proofs that do not use random oracle assumption. For existential unforgeability, there exist tight security reductions from the proposed verifiably encrypted signature scheme to a strong but reasonable computational assumption.